Properties

Label 250000.bm
Order \( 2^{4} \cdot 5^{6} \)
Exponent \( 2 \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{16} \cdot 3 \cdot 5^{6} \)
$\card{\mathrm{Out}(G)}$ \( 2^{12} \cdot 3 \)
Perm deg. $30$
Trans deg. $40$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 30 | (1,2,6,3,7,10,4,8,9,5)(11,12)(13,14)(16,17,20,19,23)(26,27,30,29,28), (1,5,6,8,7,10,4,3,9,2)(11,12,14,15,13)(18,21,22,24,25)(27,28)(29,30), (1,3,6,2,7,5,4,8,9,10)(12,13)(14,15)(16,18,17,21,20,22,19,24,23,25)(26,28,29,30,27), (1,4,6,9,7)(2,8,3,5,10)(11,12,14,15,13)(16,19)(17,20)(18,22)(24,25)(26,29,27,28,30) >;
 
Copy content gap:G := Group( (1,2,6,3,7,10,4,8,9,5)(11,12)(13,14)(16,17,20,19,23)(26,27,30,29,28), (1,5,6,8,7,10,4,3,9,2)(11,12,14,15,13)(18,21,22,24,25)(27,28)(29,30), (1,3,6,2,7,5,4,8,9,10)(12,13)(14,15)(16,18,17,21,20,22,19,24,23,25)(26,28,29,30,27), (1,4,6,9,7)(2,8,3,5,10)(11,12,14,15,13)(16,19)(17,20)(18,22)(24,25)(26,29,27,28,30) );
 
Copy content sage:G = PermutationGroup(['(1,2,6,3,7,10,4,8,9,5)(11,12)(13,14)(16,17,20,19,23)(26,27,30,29,28)', '(1,5,6,8,7,10,4,3,9,2)(11,12,14,15,13)(18,21,22,24,25)(27,28)(29,30)', '(1,3,6,2,7,5,4,8,9,10)(12,13)(14,15)(16,18,17,21,20,22,19,24,23,25)(26,28,29,30,27)', '(1,4,6,9,7)(2,8,3,5,10)(11,12,14,15,13)(16,19)(17,20)(18,22)(24,25)(26,29,27,28,30)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5368713146612370658276090636220377338204540631595760162915914769759662872906441812971416867262787011731960826135694727399753132931990226612311715306589439,250000)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10;
 

Group information

Description:$C_5^6:C_2^4$
Order: \(250000\)\(\medspace = 2^{4} \cdot 5^{6} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_5^6:(D_4^3.C_4\wr S_3)$, of order \(3072000000\)\(\medspace = 2^{16} \cdot 3 \cdot 5^{6} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_5$ x 6
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 5 10
Elements 1 18575 15624 215800 250000
Conjugacy classes   1 15 1160 520 1696
Divisions 1 15 580 260 856
Autjugacy classes 1 4 9 10 24

Minimal presentations

Permutation degree:$30$
Transitive degree:$40$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 16 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g \mid b^{10}=c^{10}=d^{10}=e^{5}=f^{5}=g^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([10, -2, -2, -5, -2, -5, -2, -5, -5, 5, 5, 153200, 3850761, 51, 204482, 9728803, 1771613, 8223, 113, 2002004, 4014, 252005, 546015, 93025, 95435, 15345, 175, 5636, 3257, 3600008, 1800018, 18058, 20400009, 10200019, 1220039, 33059]); a,b,c,d,e,f,g := Explode([G.1, G.2, G.4, G.6, G.8, G.9, G.10]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "f", "g"]);
 
Copy content gap:G := PcGroupCode(5368713146612370658276090636220377338204540631595760162915914769759662872906441812971416867262787011731960826135694727399753132931990226612311715306589439,250000); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.9; g := G.10;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5368713146612370658276090636220377338204540631595760162915914769759662872906441812971416867262787011731960826135694727399753132931990226612311715306589439,250000)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5368713146612370658276090636220377338204540631595760162915914769759662872906441812971416867262787011731960826135694727399753132931990226612311715306589439,250000)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.9; g = G.10;
 
Permutation group:Degree $30$ $\langle(1,2,6,3,7,10,4,8,9,5)(11,12)(13,14)(16,17,20,19,23)(26,27,30,29,28), (1,5,6,8,7,10,4,3,9,2) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 30 | (1,2,6,3,7,10,4,8,9,5)(11,12)(13,14)(16,17,20,19,23)(26,27,30,29,28), (1,5,6,8,7,10,4,3,9,2)(11,12,14,15,13)(18,21,22,24,25)(27,28)(29,30), (1,3,6,2,7,5,4,8,9,10)(12,13)(14,15)(16,18,17,21,20,22,19,24,23,25)(26,28,29,30,27), (1,4,6,9,7)(2,8,3,5,10)(11,12,14,15,13)(16,19)(17,20)(18,22)(24,25)(26,29,27,28,30) >;
 
Copy content gap:G := Group( (1,2,6,3,7,10,4,8,9,5)(11,12)(13,14)(16,17,20,19,23)(26,27,30,29,28), (1,5,6,8,7,10,4,3,9,2)(11,12,14,15,13)(18,21,22,24,25)(27,28)(29,30), (1,3,6,2,7,5,4,8,9,10)(12,13)(14,15)(16,18,17,21,20,22,19,24,23,25)(26,28,29,30,27), (1,4,6,9,7)(2,8,3,5,10)(11,12,14,15,13)(16,19)(17,20)(18,22)(24,25)(26,29,27,28,30) );
 
Copy content sage:G = PermutationGroup(['(1,2,6,3,7,10,4,8,9,5)(11,12)(13,14)(16,17,20,19,23)(26,27,30,29,28)', '(1,5,6,8,7,10,4,3,9,2)(11,12,14,15,13)(18,21,22,24,25)(27,28)(29,30)', '(1,3,6,2,7,5,4,8,9,10)(12,13)(14,15)(16,18,17,21,20,22,19,24,23,25)(26,28,29,30,27)', '(1,4,6,9,7)(2,8,3,5,10)(11,12,14,15,13)(16,19)(17,20)(18,22)(24,25)(26,29,27,28,30)'])
 
Transitive group: 40T106938 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_5^2$ . $D_5^4$ $C_5^4$ . $D_{10}^2$ (2) $C_5$ . $(C_5:D_5^4)$ $(C_5^2:D_5^3)$ . $D_5$ all 23

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 303 normal subgroups (6 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_5^6:C_2^4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_5^6$ $G/G' \simeq$ $C_2^4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_5^6:C_2^4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_5^6$ $G/\operatorname{Fit} \simeq$ $C_2^4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_5^6:C_2^4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_5^6$ $G/\operatorname{soc} \simeq$ $C_2^4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^4$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^6$

Subgroup diagram and profile

Series

Derived series $C_5^6:C_2^4$ $\rhd$ $C_5^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_5^6:C_2^4$ $\rhd$ $C_5^6:C_2^3$ $\rhd$ $C_5\times C_5:D_5\times C_5\times C_5:D_5$ $\rhd$ $C_5^5:C_2^2$ $\rhd$ $C_5^5:C_2$ $\rhd$ $C_5^2\wr C_2$ $\rhd$ $C_5^4$ $\rhd$ $C_5^3$ $\rhd$ $C_5^2$ $\rhd$ $C_5$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_5^6:C_2^4$ $\rhd$ $C_5^6$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 13 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1696 \times 1696$ character table is not available for this group.

Rational character table

The $856 \times 856$ rational character table is not available for this group.