Properties

Label 24576.qf
Order \( 2^{13} \cdot 3 \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{17} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \)
Perm deg. $24$
Trans deg. $24$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,11,2,12)(3,10,4,9)(5,15)(6,16)(7,14)(8,13)(17,20,18,19)(21,22), (1,19,15,2,20,16)(3,18,14)(4,17,13)(5,21,10)(6,22,9)(7,23,11,8,24,12), (1,24,15,2,23,16)(3,21,13)(4,22,14)(5,20,10,7,17,12)(6,19,9,8,18,11) >;
 
Copy content gap:G := Group( (1,11,2,12)(3,10,4,9)(5,15)(6,16)(7,14)(8,13)(17,20,18,19)(21,22), (1,19,15,2,20,16)(3,18,14)(4,17,13)(5,21,10)(6,22,9)(7,23,11,8,24,12), (1,24,15,2,23,16)(3,21,13)(4,22,14)(5,20,10,7,17,12)(6,19,9,8,18,11) );
 
Copy content sage:G = PermutationGroup(['(1,11,2,12)(3,10,4,9)(5,15)(6,16)(7,14)(8,13)(17,20,18,19)(21,22)', '(1,19,15,2,20,16)(3,18,14)(4,17,13)(5,21,10)(6,22,9)(7,23,11,8,24,12)', '(1,24,15,2,23,16)(3,21,13)(4,22,14)(5,20,10,7,17,12)(6,19,9,8,18,11)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(406661025379410238544989479386923169530713135552558680148848741148816288169371068301978988629442120151290160156076155575907322246304623338388480109445435575933937106825658095244055320297554346649199489177418120772464645989172079840095576530560867884242126995983869829105664,24576)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10; h = G.11; i = G.13;
 

Group information

Description:$C_4^3.C_2^4:S_4$
Order: \(24576\)\(\medspace = 2^{13} \cdot 3 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^3\times C_4^2.C_2^4.C_6.C_2^5$, of order \(393216\)\(\medspace = 2^{17} \cdot 3 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 1055 512 7648 5632 7680 2048 24576
Conjugacy classes   1 26 1 63 7 35 2 135
Divisions 1 26 1 58 5 28 2 121
Autjugacy classes 1 23 1 44 5 18 1 93

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 8 12 16 24 48
Irr. complex chars.   8 6 24 1 34 8 27 1 24 2 135
Irr. rational chars. 8 4 24 2 20 4 34 3 16 6 121

Minimal presentations

Permutation degree:$24$
Transitive degree:$24$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 12 12
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid b^{6}=d^{2}=e^{2}=f^{4}=h^{4}=i^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 184464, 330905, 71, 449906, 950883, 683777, 199111, 157, 52084, 49578, 221372, 35900, 8069, 665299, 11121, 110591, 4710, 157604, 76474, 101184, 64519, 741909, 107555, 145201, 329, 798358, 387108, 188169, 1088663, 141157, 2375, 2158474, 931416, 371486, 221196, 88770, 14864, 8102, 3524, 458, 580619, 1322521, 145191, 2227692, 196586, 353848, 158758, 83074, 35040, 20494, 2336, 544, 2483725, 37659, 620969]); a,b,c,d,e,f,g,h,i := Explode([G.1, G.2, G.4, G.6, G.7, G.8, G.10, G.11, G.13]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "e", "f", "f2", "g", "h", "h2", "i", "i2"]);
 
Copy content gap:G := PcGroupCode(406661025379410238544989479386923169530713135552558680148848741148816288169371068301978988629442120151290160156076155575907322246304623338388480109445435575933937106825658095244055320297554346649199489177418120772464645989172079840095576530560867884242126995983869829105664,24576); a := G.1; b := G.2; c := G.4; d := G.6; e := G.7; f := G.8; g := G.10; h := G.11; i := G.13;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(406661025379410238544989479386923169530713135552558680148848741148816288169371068301978988629442120151290160156076155575907322246304623338388480109445435575933937106825658095244055320297554346649199489177418120772464645989172079840095576530560867884242126995983869829105664,24576)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10; h = G.11; i = G.13;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(406661025379410238544989479386923169530713135552558680148848741148816288169371068301978988629442120151290160156076155575907322246304623338388480109445435575933937106825658095244055320297554346649199489177418120772464645989172079840095576530560867884242126995983869829105664,24576)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10; h = G.11; i = G.13;
 
Permutation group:Degree $24$ $\langle(1,11,2,12)(3,10,4,9)(5,15)(6,16)(7,14)(8,13)(17,20,18,19)(21,22), (1,19,15,2,20,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,11,2,12)(3,10,4,9)(5,15)(6,16)(7,14)(8,13)(17,20,18,19)(21,22), (1,19,15,2,20,16)(3,18,14)(4,17,13)(5,21,10)(6,22,9)(7,23,11,8,24,12), (1,24,15,2,23,16)(3,21,13)(4,22,14)(5,20,10,7,17,12)(6,19,9,8,18,11) >;
 
Copy content gap:G := Group( (1,11,2,12)(3,10,4,9)(5,15)(6,16)(7,14)(8,13)(17,20,18,19)(21,22), (1,19,15,2,20,16)(3,18,14)(4,17,13)(5,21,10)(6,22,9)(7,23,11,8,24,12), (1,24,15,2,23,16)(3,21,13)(4,22,14)(5,20,10,7,17,12)(6,19,9,8,18,11) );
 
Copy content sage:G = PermutationGroup(['(1,11,2,12)(3,10,4,9)(5,15)(6,16)(7,14)(8,13)(17,20,18,19)(21,22)', '(1,19,15,2,20,16)(3,18,14)(4,17,13)(5,21,10)(6,22,9)(7,23,11,8,24,12)', '(1,24,15,2,23,16)(3,21,13)(4,22,14)(5,20,10,7,17,12)(6,19,9,8,18,11)'])
 
Transitive group: 24T13294 24T13401 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^7.C_2^3)$ . $S_4$ (3) $C_2^7$ . $(C_2^3:S_4)$ $C_2^6$ . $(C_2^4:S_4)$ $C_4^3$ . $(C_2^4:S_4)$ all 51

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 66 normal subgroups (64 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_4^2.C_2^4.D_4:S_3$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^5.C_2^4.C_6$ $G/G' \simeq$ $C_2^3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^2\times C_4^2$ $G/\Phi \simeq$ $C_2^2\wr S_3$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^4.C_2^6.C_2^2$ $G/\operatorname{Fit} \simeq$ $S_3$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_4^3.C_2^4:S_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^3$ $G/\operatorname{soc} \simeq$ $C_2^8.D_6$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.C_2^5.C_2^3$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

Series

Derived series $C_4^3.C_2^4:S_4$ $\rhd$ $C_2^5.C_2^4.C_6$ $\rhd$ $C_2^3.C_2^6$ $\rhd$ $C_2^3$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_4^3.C_2^4:S_4$ $\rhd$ $C_2^5.C_2\wr C_6$ $\rhd$ $(C_2^3\times C_4^3):A_4$ $\rhd$ $C_2^5.C_2^4.C_6$ $\rhd$ $(C_2^3\times C_4^2):A_4$ $\rhd$ $C_2^3.C_2^6$ $\rhd$ $C_2^3\times C_4^2$ $\rhd$ $C_2^5$ $\rhd$ $C_2^3$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_4^3.C_2^4:S_4$ $\rhd$ $C_2^5.C_2^4.C_6$ $\rhd$ $(C_2^3\times C_4^2):A_4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $135 \times 135$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $121 \times 121$ rational character table.