Properties

Label 24576.md
Order \( 2^{13} \cdot 3 \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{16} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $24$
Trans deg. $24$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,21,7,18,2,22,8,17)(3,24,5,20,4,23,6,19)(9,16,11,13)(10,15,12,14), (1,6,4,7)(2,5,3,8)(9,23,16,18)(10,24,15,17)(11,22,13,19)(12,21,14,20), (1,22,14,5,18,12,2,21,13,6,17,11)(3,24,16,7,19,10,4,23,15,8,20,9) >;
 
Copy content gap:G := Group( (1,21,7,18,2,22,8,17)(3,24,5,20,4,23,6,19)(9,16,11,13)(10,15,12,14), (1,6,4,7)(2,5,3,8)(9,23,16,18)(10,24,15,17)(11,22,13,19)(12,21,14,20), (1,22,14,5,18,12,2,21,13,6,17,11)(3,24,16,7,19,10,4,23,15,8,20,9) );
 
Copy content sage:G = PermutationGroup(['(1,21,7,18,2,22,8,17)(3,24,5,20,4,23,6,19)(9,16,11,13)(10,15,12,14)', '(1,6,4,7)(2,5,3,8)(9,23,16,18)(10,24,15,17)(11,22,13,19)(12,21,14,20)', '(1,22,14,5,18,12,2,21,13,6,17,11)(3,24,16,7,19,10,4,23,15,8,20,9)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(447918568004231864667856359522409699233308451897231699629087331912423191694558069695396493744084462718904599760664371819108353117828551220803486055448180189364736948173231810081492508539145671225146698238032513815968235240742620239463586516552153176433120668494213804641671359627187456679892384957440,24576)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.13; j = G.14;
 

Group information

Description:$C_2^8.\GL(2,\mathbb{Z}/4)$
Order: \(24576\)\(\medspace = 2^{13} \cdot 3 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$A_4\times S_3^2:C_6$, of order \(196608\)\(\medspace = 2^{16} \cdot 3 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 1055 512 10720 5632 4608 2048 24576
Conjugacy classes   1 47 1 108 7 14 2 180
Divisions 1 47 1 94 5 7 1 156
Autjugacy classes 1 43 1 82 6 6 2 141

Minimal presentations

Permutation degree:$24$
Transitive degree:$24$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid a^{4}=d^{2}=e^{4}=f^{2}=g^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 28, 175226, 203212, 114, 1331459, 654097, 119661, 697204, 2552, 135916, 44860, 568517, 719731, 459681, 85223, 762054, 14132, 582742, 287874, 70230, 35160, 286, 193543, 43043, 24241, 1983752, 120982, 350820, 314546, 82720, 2612, 349449, 161303, 42877, 76071, 95265, 51599, 961, 415, 66566, 3748, 2128907, 1161241, 155271, 335717, 32323, 24287, 2825, 1153164, 698906, 631216, 210810, 59764, 14656, 978445, 451611, 707993, 10639, 112965, 9505, 923]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.3, G.5, G.6, G.7, G.9, G.10, G.12, G.13, G.14]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "e", "e2", "f", "g", "g2", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(447918568004231864667856359522409699233308451897231699629087331912423191694558069695396493744084462718904599760664371819108353117828551220803486055448180189364736948173231810081492508539145671225146698238032513815968235240742620239463586516552153176433120668494213804641671359627187456679892384957440,24576); a := G.1; b := G.3; c := G.5; d := G.6; e := G.7; f := G.9; g := G.10; h := G.12; i := G.13; j := G.14;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(447918568004231864667856359522409699233308451897231699629087331912423191694558069695396493744084462718904599760664371819108353117828551220803486055448180189364736948173231810081492508539145671225146698238032513815968235240742620239463586516552153176433120668494213804641671359627187456679892384957440,24576)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.13; j = G.14;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(447918568004231864667856359522409699233308451897231699629087331912423191694558069695396493744084462718904599760664371819108353117828551220803486055448180189364736948173231810081492508539145671225146698238032513815968235240742620239463586516552153176433120668494213804641671359627187456679892384957440,24576)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.13; j = G.14;
 
Permutation group:Degree $24$ $\langle(1,21,7,18,2,22,8,17)(3,24,5,20,4,23,6,19)(9,16,11,13)(10,15,12,14), (1,6,4,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (1,21,7,18,2,22,8,17)(3,24,5,20,4,23,6,19)(9,16,11,13)(10,15,12,14), (1,6,4,7)(2,5,3,8)(9,23,16,18)(10,24,15,17)(11,22,13,19)(12,21,14,20), (1,22,14,5,18,12,2,21,13,6,17,11)(3,24,16,7,19,10,4,23,15,8,20,9) >;
 
Copy content gap:G := Group( (1,21,7,18,2,22,8,17)(3,24,5,20,4,23,6,19)(9,16,11,13)(10,15,12,14), (1,6,4,7)(2,5,3,8)(9,23,16,18)(10,24,15,17)(11,22,13,19)(12,21,14,20), (1,22,14,5,18,12,2,21,13,6,17,11)(3,24,16,7,19,10,4,23,15,8,20,9) );
 
Copy content sage:G = PermutationGroup(['(1,21,7,18,2,22,8,17)(3,24,5,20,4,23,6,19)(9,16,11,13)(10,15,12,14)', '(1,6,4,7)(2,5,3,8)(9,23,16,18)(10,24,15,17)(11,22,13,19)(12,21,14,20)', '(1,22,14,5,18,12,2,21,13,6,17,11)(3,24,16,7,19,10,4,23,15,8,20,9)'])
 
Transitive group: 24T13068 24T13193 24T13667 24T13860 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^8.A_4)$ . $D_4$ $C_2^6$ . $(C_2\wr S_3)$ (5) $(C_2^8.C_2^4)$ . $S_3$ $(C_2^6.C_2^4)$ . $S_4$ (7) all 92

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{8}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 143 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^6.(C_2^5.S_3)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^7.(C_2\times A_4)$ $G/G' \simeq$ $C_2\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^5$ $G/\Phi \simeq$ $C_2^5:S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^8.C_2^4$ $G/\operatorname{Fit} \simeq$ $S_3$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^8.\GL(2,\mathbb{Z}/4)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^3$ $G/\operatorname{soc} \simeq$ $C_2^5.\GL(2,\mathbb{Z}/4)$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^3.C_2^6.C_2^4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

Series

Derived series $C_2^8.\GL(2,\mathbb{Z}/4)$ $\rhd$ $C_2^7.(C_2\times A_4)$ $\rhd$ $C_2^7.C_2^2$ $\rhd$ $C_2^3$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^8.\GL(2,\mathbb{Z}/4)$ $\rhd$ $D_4^3.(C_2\times A_4)$ $\rhd$ $C_2^8.(C_2\times A_4)$ $\rhd$ $C_2^7.(C_2\times A_4)$ $\rhd$ $C_2^7:A_4$ $\rhd$ $C_2^7.C_2^2$ $\rhd$ $C_2^7$ $\rhd$ $C_2^5$ $\rhd$ $C_2^3$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^8.\GL(2,\mathbb{Z}/4)$ $\rhd$ $C_2^7.(C_2\times A_4)$ $\rhd$ $C_2^7:A_4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $180 \times 180$ character table is not available for this group.

Rational character table

The $156 \times 156$ rational character table is not available for this group.