Properties

Label 24576.bds
Order \( 2^{13} \cdot 3 \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{15} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $66$
Trans deg. not computed
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 66 | (6,19)(8,17)(13,35)(14,33)(16,28)(20,29)(22,26)(24,47)(25,48)(27,51)(30,52)(32,55)(36,44)(37,60)(38,57)(39,42)(40,61)(41,62)(43,59)(45,54)(46,49)(50,53)(56,58)(63,64), (1,5,4,18)(2,12,10,34)(3,15,7,21)(6,26,19,22)(8,27,20,47)(9,31,23,11)(13,42,35,39)(14,38,36,61)(16,49,28,46)(17,51,29,24)(25,56,53,45)(30,41,59,63)(32,37,55,60)(33,57,44,40)(43,64,52,62)(48,58,50,54), (1,6)(2,13)(3,16)(4,19)(5,22)(7,28)(8,25)(9,32)(10,35)(11,37)(12,39)(14,43)(15,46)(17,50)(18,26)(20,53)(21,49)(23,55)(24,54)(27,45)(29,48)(30,33)(31,60)(34,42)(36,52)(38,62)(40,41)(44,59)(47,56)(51,58)(57,63)(61,64), (2,11,9,12)(3,7)(5,15,18,21)(6,25)(10,31,23,34)(13,41,32,62)(14,38,33,40)(16,48)(17,29)(19,53)(22,45,26,56)(24,47,51,27)(28,50)(30,37,43,39)(35,63,55,64)(36,61,44,57)(42,59,60,52)(46,54,49,58), (6,16)(8,29)(13,32)(14,44)(17,20)(19,28)(22,46)(24,27)(25,53)(26,49)(30,59)(33,36)(35,55)(37,42)(38,40)(39,60)(41,63)(43,52)(45,56)(47,51)(48,50)(54,58)(57,61)(62,64), (2,10)(5,21)(9,23)(11,34)(12,31)(13,35)(14,36)(15,18)(22,49)(24,27)(26,46)(30,59)(32,55)(33,44)(37,42)(38,57)(39,60)(40,61)(41,64)(43,52)(45,54)(47,51)(56,58)(62,63), (1,4)(2,10)(3,7)(5,18)(6,19)(8,20)(9,23)(11,31)(12,34)(13,35)(14,36)(15,21)(16,28)(17,29)(22,26)(24,51)(25,53)(27,47)(30,59)(32,55)(33,44)(37,60)(38,61)(39,42)(40,57)(41,63)(43,52)(45,56)(46,49)(48,50)(54,58)(62,64), (1,2,3,9)(4,10,7,23)(5,12,15,31)(6,13,16,32)(8,14,17,33)(11,18,34,21)(19,35,28,55)(20,36,29,44)(22,39,46,60)(24,40,47,61)(25,43,50,30)(26,42,49,37)(27,38,51,57)(41,56,64,54)(45,62,58,63)(48,59,53,52), (2,9)(5,18)(10,23)(11,12)(13,32)(14,33)(15,21)(22,26)(24,51)(27,47)(30,43)(31,34)(35,55)(36,44)(37,39)(38,40)(41,62)(42,60)(45,56)(46,49)(52,59)(54,58)(57,61)(63,64), (65,66), (1,8)(2,14)(3,17)(4,20)(5,24)(6,25)(7,29)(9,33)(10,36)(11,38)(12,40)(13,43)(15,47)(16,50)(18,51)(19,53)(21,27)(22,54)(23,44)(26,58)(28,48)(30,32)(31,61)(34,57)(35,52)(37,62)(39,41)(42,63)(45,49)(46,56)(55,59)(60,64)(65,66), (1,7,3)(2,11,5,23,31,15)(6,27,48,60,29,59,16,24,50,39,8,30)(9,12,18,10,34,21)(13,33,54,49,61,64,32,36,58,26,57,62)(14,45,46,40,63,55,44,56,22,38,41,35)(17,52,19,51,25,37,20,43,28,47,53,42), (1,3)(2,9)(4,7)(5,15)(6,16)(8,17)(10,23)(11,34)(12,31)(13,32)(14,33)(18,21)(19,28)(20,29)(22,46)(24,47)(25,50)(26,49)(27,51)(30,43)(35,55)(36,44)(37,42)(38,57)(39,60)(40,61)(41,64)(45,58)(48,53)(52,59)(54,56)(62,63) >;
 
Copy content gap:G := Group( (6,19)(8,17)(13,35)(14,33)(16,28)(20,29)(22,26)(24,47)(25,48)(27,51)(30,52)(32,55)(36,44)(37,60)(38,57)(39,42)(40,61)(41,62)(43,59)(45,54)(46,49)(50,53)(56,58)(63,64), (1,5,4,18)(2,12,10,34)(3,15,7,21)(6,26,19,22)(8,27,20,47)(9,31,23,11)(13,42,35,39)(14,38,36,61)(16,49,28,46)(17,51,29,24)(25,56,53,45)(30,41,59,63)(32,37,55,60)(33,57,44,40)(43,64,52,62)(48,58,50,54), (1,6)(2,13)(3,16)(4,19)(5,22)(7,28)(8,25)(9,32)(10,35)(11,37)(12,39)(14,43)(15,46)(17,50)(18,26)(20,53)(21,49)(23,55)(24,54)(27,45)(29,48)(30,33)(31,60)(34,42)(36,52)(38,62)(40,41)(44,59)(47,56)(51,58)(57,63)(61,64), (2,11,9,12)(3,7)(5,15,18,21)(6,25)(10,31,23,34)(13,41,32,62)(14,38,33,40)(16,48)(17,29)(19,53)(22,45,26,56)(24,47,51,27)(28,50)(30,37,43,39)(35,63,55,64)(36,61,44,57)(42,59,60,52)(46,54,49,58), (6,16)(8,29)(13,32)(14,44)(17,20)(19,28)(22,46)(24,27)(25,53)(26,49)(30,59)(33,36)(35,55)(37,42)(38,40)(39,60)(41,63)(43,52)(45,56)(47,51)(48,50)(54,58)(57,61)(62,64), (2,10)(5,21)(9,23)(11,34)(12,31)(13,35)(14,36)(15,18)(22,49)(24,27)(26,46)(30,59)(32,55)(33,44)(37,42)(38,57)(39,60)(40,61)(41,64)(43,52)(45,54)(47,51)(56,58)(62,63), (1,4)(2,10)(3,7)(5,18)(6,19)(8,20)(9,23)(11,31)(12,34)(13,35)(14,36)(15,21)(16,28)(17,29)(22,26)(24,51)(25,53)(27,47)(30,59)(32,55)(33,44)(37,60)(38,61)(39,42)(40,57)(41,63)(43,52)(45,56)(46,49)(48,50)(54,58)(62,64), (1,2,3,9)(4,10,7,23)(5,12,15,31)(6,13,16,32)(8,14,17,33)(11,18,34,21)(19,35,28,55)(20,36,29,44)(22,39,46,60)(24,40,47,61)(25,43,50,30)(26,42,49,37)(27,38,51,57)(41,56,64,54)(45,62,58,63)(48,59,53,52), (2,9)(5,18)(10,23)(11,12)(13,32)(14,33)(15,21)(22,26)(24,51)(27,47)(30,43)(31,34)(35,55)(36,44)(37,39)(38,40)(41,62)(42,60)(45,56)(46,49)(52,59)(54,58)(57,61)(63,64), (65,66), (1,8)(2,14)(3,17)(4,20)(5,24)(6,25)(7,29)(9,33)(10,36)(11,38)(12,40)(13,43)(15,47)(16,50)(18,51)(19,53)(21,27)(22,54)(23,44)(26,58)(28,48)(30,32)(31,61)(34,57)(35,52)(37,62)(39,41)(42,63)(45,49)(46,56)(55,59)(60,64)(65,66), (1,7,3)(2,11,5,23,31,15)(6,27,48,60,29,59,16,24,50,39,8,30)(9,12,18,10,34,21)(13,33,54,49,61,64,32,36,58,26,57,62)(14,45,46,40,63,55,44,56,22,38,41,35)(17,52,19,51,25,37,20,43,28,47,53,42), (1,3)(2,9)(4,7)(5,15)(6,16)(8,17)(10,23)(11,34)(12,31)(13,32)(14,33)(18,21)(19,28)(20,29)(22,46)(24,47)(25,50)(26,49)(27,51)(30,43)(35,55)(36,44)(37,42)(38,57)(39,60)(40,61)(41,64)(45,58)(48,53)(52,59)(54,56)(62,63) );
 
Copy content sage:G = PermutationGroup(['(6,19)(8,17)(13,35)(14,33)(16,28)(20,29)(22,26)(24,47)(25,48)(27,51)(30,52)(32,55)(36,44)(37,60)(38,57)(39,42)(40,61)(41,62)(43,59)(45,54)(46,49)(50,53)(56,58)(63,64)', '(1,5,4,18)(2,12,10,34)(3,15,7,21)(6,26,19,22)(8,27,20,47)(9,31,23,11)(13,42,35,39)(14,38,36,61)(16,49,28,46)(17,51,29,24)(25,56,53,45)(30,41,59,63)(32,37,55,60)(33,57,44,40)(43,64,52,62)(48,58,50,54)', '(1,6)(2,13)(3,16)(4,19)(5,22)(7,28)(8,25)(9,32)(10,35)(11,37)(12,39)(14,43)(15,46)(17,50)(18,26)(20,53)(21,49)(23,55)(24,54)(27,45)(29,48)(30,33)(31,60)(34,42)(36,52)(38,62)(40,41)(44,59)(47,56)(51,58)(57,63)(61,64)', '(2,11,9,12)(3,7)(5,15,18,21)(6,25)(10,31,23,34)(13,41,32,62)(14,38,33,40)(16,48)(17,29)(19,53)(22,45,26,56)(24,47,51,27)(28,50)(30,37,43,39)(35,63,55,64)(36,61,44,57)(42,59,60,52)(46,54,49,58)', '(6,16)(8,29)(13,32)(14,44)(17,20)(19,28)(22,46)(24,27)(25,53)(26,49)(30,59)(33,36)(35,55)(37,42)(38,40)(39,60)(41,63)(43,52)(45,56)(47,51)(48,50)(54,58)(57,61)(62,64)', '(2,10)(5,21)(9,23)(11,34)(12,31)(13,35)(14,36)(15,18)(22,49)(24,27)(26,46)(30,59)(32,55)(33,44)(37,42)(38,57)(39,60)(40,61)(41,64)(43,52)(45,54)(47,51)(56,58)(62,63)', '(1,4)(2,10)(3,7)(5,18)(6,19)(8,20)(9,23)(11,31)(12,34)(13,35)(14,36)(15,21)(16,28)(17,29)(22,26)(24,51)(25,53)(27,47)(30,59)(32,55)(33,44)(37,60)(38,61)(39,42)(40,57)(41,63)(43,52)(45,56)(46,49)(48,50)(54,58)(62,64)', '(1,2,3,9)(4,10,7,23)(5,12,15,31)(6,13,16,32)(8,14,17,33)(11,18,34,21)(19,35,28,55)(20,36,29,44)(22,39,46,60)(24,40,47,61)(25,43,50,30)(26,42,49,37)(27,38,51,57)(41,56,64,54)(45,62,58,63)(48,59,53,52)', '(2,9)(5,18)(10,23)(11,12)(13,32)(14,33)(15,21)(22,26)(24,51)(27,47)(30,43)(31,34)(35,55)(36,44)(37,39)(38,40)(41,62)(42,60)(45,56)(46,49)(52,59)(54,58)(57,61)(63,64)', '(65,66)', '(1,8)(2,14)(3,17)(4,20)(5,24)(6,25)(7,29)(9,33)(10,36)(11,38)(12,40)(13,43)(15,47)(16,50)(18,51)(19,53)(21,27)(22,54)(23,44)(26,58)(28,48)(30,32)(31,61)(34,57)(35,52)(37,62)(39,41)(42,63)(45,49)(46,56)(55,59)(60,64)(65,66)', '(1,7,3)(2,11,5,23,31,15)(6,27,48,60,29,59,16,24,50,39,8,30)(9,12,18,10,34,21)(13,33,54,49,61,64,32,36,58,26,57,62)(14,45,46,40,63,55,44,56,22,38,41,35)(17,52,19,51,25,37,20,43,28,47,53,42)', '(1,3)(2,9)(4,7)(5,15)(6,16)(8,17)(10,23)(11,34)(12,31)(13,32)(14,33)(18,21)(19,28)(20,29)(22,46)(24,47)(25,50)(26,49)(27,51)(30,43)(35,55)(36,44)(37,42)(38,57)(39,60)(40,61)(41,64)(45,58)(48,53)(52,59)(54,56)(62,63)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20234693255853082559114836912644670497374153579177522788076544472902246791814843625856725890790288088552899918194159348866678620265394026399798745061332062714687736162935041107262232663807858982915299238358965752336934048878968960,24576)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.6; f = G.8; g = G.9; h = G.10; i = G.11; j = G.13;
 

Group information

Description:$(C_2^2\times C_4^3).\GL(2,\mathbb{Z}/4)$
Order: \(24576\)\(\medspace = 2^{13} \cdot 3 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_{34}:F_{17}$, of order \(98304\)\(\medspace = 2^{15} \cdot 3 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 1119 128 9120 4992 6144 3072 24576
Conjugacy classes   1 37 1 68 21 22 6 156
Divisions 1 37 1 68 15 22 4 148
Autjugacy classes 1 30 1 45 16 11 3 107

Minimal presentations

Permutation degree:$66$
Transitive degree:not computed
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 48 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid b^{2}=c^{2}=d^{4}=e^{6}=f^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 672, 4874, 2243, 367, 157, 14564, 18821, 3743, 243, 1616, 1886984, 205682, 63582, 26552, 8422, 913929, 275571, 72319, 7653, 11867, 1182730, 532262, 325300, 44418, 103568, 48142, 6898, 2908, 458, 2580491, 64593, 40415, 279564, 978472, 244662, 209732, 131122, 48144, 8860, 2322, 544, 602125, 376375, 94163, 9505]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.2, G.3, G.4, G.6, G.8, G.9, G.10, G.11, G.13]); AssignNames(~G, ["a", "b", "c", "d", "d2", "e", "e2", "f", "g", "h", "i", "i2", "j", "j2"]);
 
Copy content gap:G := PcGroupCode(20234693255853082559114836912644670497374153579177522788076544472902246791814843625856725890790288088552899918194159348866678620265394026399798745061332062714687736162935041107262232663807858982915299238358965752336934048878968960,24576); a := G.1; b := G.2; c := G.3; d := G.4; e := G.6; f := G.8; g := G.9; h := G.10; i := G.11; j := G.13;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20234693255853082559114836912644670497374153579177522788076544472902246791814843625856725890790288088552899918194159348866678620265394026399798745061332062714687736162935041107262232663807858982915299238358965752336934048878968960,24576)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.6; f = G.8; g = G.9; h = G.10; i = G.11; j = G.13;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20234693255853082559114836912644670497374153579177522788076544472902246791814843625856725890790288088552899918194159348866678620265394026399798745061332062714687736162935041107262232663807858982915299238358965752336934048878968960,24576)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.6; f = G.8; g = G.9; h = G.10; i = G.11; j = G.13;
 
Permutation group:Degree $66$ $\langle(6,19)(8,17)(13,35)(14,33)(16,28)(20,29)(22,26)(24,47)(25,48)(27,51)(30,52) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 66 | (6,19)(8,17)(13,35)(14,33)(16,28)(20,29)(22,26)(24,47)(25,48)(27,51)(30,52)(32,55)(36,44)(37,60)(38,57)(39,42)(40,61)(41,62)(43,59)(45,54)(46,49)(50,53)(56,58)(63,64), (1,5,4,18)(2,12,10,34)(3,15,7,21)(6,26,19,22)(8,27,20,47)(9,31,23,11)(13,42,35,39)(14,38,36,61)(16,49,28,46)(17,51,29,24)(25,56,53,45)(30,41,59,63)(32,37,55,60)(33,57,44,40)(43,64,52,62)(48,58,50,54), (1,6)(2,13)(3,16)(4,19)(5,22)(7,28)(8,25)(9,32)(10,35)(11,37)(12,39)(14,43)(15,46)(17,50)(18,26)(20,53)(21,49)(23,55)(24,54)(27,45)(29,48)(30,33)(31,60)(34,42)(36,52)(38,62)(40,41)(44,59)(47,56)(51,58)(57,63)(61,64), (2,11,9,12)(3,7)(5,15,18,21)(6,25)(10,31,23,34)(13,41,32,62)(14,38,33,40)(16,48)(17,29)(19,53)(22,45,26,56)(24,47,51,27)(28,50)(30,37,43,39)(35,63,55,64)(36,61,44,57)(42,59,60,52)(46,54,49,58), (6,16)(8,29)(13,32)(14,44)(17,20)(19,28)(22,46)(24,27)(25,53)(26,49)(30,59)(33,36)(35,55)(37,42)(38,40)(39,60)(41,63)(43,52)(45,56)(47,51)(48,50)(54,58)(57,61)(62,64), (2,10)(5,21)(9,23)(11,34)(12,31)(13,35)(14,36)(15,18)(22,49)(24,27)(26,46)(30,59)(32,55)(33,44)(37,42)(38,57)(39,60)(40,61)(41,64)(43,52)(45,54)(47,51)(56,58)(62,63), (1,4)(2,10)(3,7)(5,18)(6,19)(8,20)(9,23)(11,31)(12,34)(13,35)(14,36)(15,21)(16,28)(17,29)(22,26)(24,51)(25,53)(27,47)(30,59)(32,55)(33,44)(37,60)(38,61)(39,42)(40,57)(41,63)(43,52)(45,56)(46,49)(48,50)(54,58)(62,64), (1,2,3,9)(4,10,7,23)(5,12,15,31)(6,13,16,32)(8,14,17,33)(11,18,34,21)(19,35,28,55)(20,36,29,44)(22,39,46,60)(24,40,47,61)(25,43,50,30)(26,42,49,37)(27,38,51,57)(41,56,64,54)(45,62,58,63)(48,59,53,52), (2,9)(5,18)(10,23)(11,12)(13,32)(14,33)(15,21)(22,26)(24,51)(27,47)(30,43)(31,34)(35,55)(36,44)(37,39)(38,40)(41,62)(42,60)(45,56)(46,49)(52,59)(54,58)(57,61)(63,64), (65,66), (1,8)(2,14)(3,17)(4,20)(5,24)(6,25)(7,29)(9,33)(10,36)(11,38)(12,40)(13,43)(15,47)(16,50)(18,51)(19,53)(21,27)(22,54)(23,44)(26,58)(28,48)(30,32)(31,61)(34,57)(35,52)(37,62)(39,41)(42,63)(45,49)(46,56)(55,59)(60,64)(65,66), (1,7,3)(2,11,5,23,31,15)(6,27,48,60,29,59,16,24,50,39,8,30)(9,12,18,10,34,21)(13,33,54,49,61,64,32,36,58,26,57,62)(14,45,46,40,63,55,44,56,22,38,41,35)(17,52,19,51,25,37,20,43,28,47,53,42), (1,3)(2,9)(4,7)(5,15)(6,16)(8,17)(10,23)(11,34)(12,31)(13,32)(14,33)(18,21)(19,28)(20,29)(22,46)(24,47)(25,50)(26,49)(27,51)(30,43)(35,55)(36,44)(37,42)(38,57)(39,60)(40,61)(41,64)(45,58)(48,53)(52,59)(54,56)(62,63) >;
 
Copy content gap:G := Group( (6,19)(8,17)(13,35)(14,33)(16,28)(20,29)(22,26)(24,47)(25,48)(27,51)(30,52)(32,55)(36,44)(37,60)(38,57)(39,42)(40,61)(41,62)(43,59)(45,54)(46,49)(50,53)(56,58)(63,64), (1,5,4,18)(2,12,10,34)(3,15,7,21)(6,26,19,22)(8,27,20,47)(9,31,23,11)(13,42,35,39)(14,38,36,61)(16,49,28,46)(17,51,29,24)(25,56,53,45)(30,41,59,63)(32,37,55,60)(33,57,44,40)(43,64,52,62)(48,58,50,54), (1,6)(2,13)(3,16)(4,19)(5,22)(7,28)(8,25)(9,32)(10,35)(11,37)(12,39)(14,43)(15,46)(17,50)(18,26)(20,53)(21,49)(23,55)(24,54)(27,45)(29,48)(30,33)(31,60)(34,42)(36,52)(38,62)(40,41)(44,59)(47,56)(51,58)(57,63)(61,64), (2,11,9,12)(3,7)(5,15,18,21)(6,25)(10,31,23,34)(13,41,32,62)(14,38,33,40)(16,48)(17,29)(19,53)(22,45,26,56)(24,47,51,27)(28,50)(30,37,43,39)(35,63,55,64)(36,61,44,57)(42,59,60,52)(46,54,49,58), (6,16)(8,29)(13,32)(14,44)(17,20)(19,28)(22,46)(24,27)(25,53)(26,49)(30,59)(33,36)(35,55)(37,42)(38,40)(39,60)(41,63)(43,52)(45,56)(47,51)(48,50)(54,58)(57,61)(62,64), (2,10)(5,21)(9,23)(11,34)(12,31)(13,35)(14,36)(15,18)(22,49)(24,27)(26,46)(30,59)(32,55)(33,44)(37,42)(38,57)(39,60)(40,61)(41,64)(43,52)(45,54)(47,51)(56,58)(62,63), (1,4)(2,10)(3,7)(5,18)(6,19)(8,20)(9,23)(11,31)(12,34)(13,35)(14,36)(15,21)(16,28)(17,29)(22,26)(24,51)(25,53)(27,47)(30,59)(32,55)(33,44)(37,60)(38,61)(39,42)(40,57)(41,63)(43,52)(45,56)(46,49)(48,50)(54,58)(62,64), (1,2,3,9)(4,10,7,23)(5,12,15,31)(6,13,16,32)(8,14,17,33)(11,18,34,21)(19,35,28,55)(20,36,29,44)(22,39,46,60)(24,40,47,61)(25,43,50,30)(26,42,49,37)(27,38,51,57)(41,56,64,54)(45,62,58,63)(48,59,53,52), (2,9)(5,18)(10,23)(11,12)(13,32)(14,33)(15,21)(22,26)(24,51)(27,47)(30,43)(31,34)(35,55)(36,44)(37,39)(38,40)(41,62)(42,60)(45,56)(46,49)(52,59)(54,58)(57,61)(63,64), (65,66), (1,8)(2,14)(3,17)(4,20)(5,24)(6,25)(7,29)(9,33)(10,36)(11,38)(12,40)(13,43)(15,47)(16,50)(18,51)(19,53)(21,27)(22,54)(23,44)(26,58)(28,48)(30,32)(31,61)(34,57)(35,52)(37,62)(39,41)(42,63)(45,49)(46,56)(55,59)(60,64)(65,66), (1,7,3)(2,11,5,23,31,15)(6,27,48,60,29,59,16,24,50,39,8,30)(9,12,18,10,34,21)(13,33,54,49,61,64,32,36,58,26,57,62)(14,45,46,40,63,55,44,56,22,38,41,35)(17,52,19,51,25,37,20,43,28,47,53,42), (1,3)(2,9)(4,7)(5,15)(6,16)(8,17)(10,23)(11,34)(12,31)(13,32)(14,33)(18,21)(19,28)(20,29)(22,46)(24,47)(25,50)(26,49)(27,51)(30,43)(35,55)(36,44)(37,42)(38,57)(39,60)(40,61)(41,64)(45,58)(48,53)(52,59)(54,56)(62,63) );
 
Copy content sage:G = PermutationGroup(['(6,19)(8,17)(13,35)(14,33)(16,28)(20,29)(22,26)(24,47)(25,48)(27,51)(30,52)(32,55)(36,44)(37,60)(38,57)(39,42)(40,61)(41,62)(43,59)(45,54)(46,49)(50,53)(56,58)(63,64)', '(1,5,4,18)(2,12,10,34)(3,15,7,21)(6,26,19,22)(8,27,20,47)(9,31,23,11)(13,42,35,39)(14,38,36,61)(16,49,28,46)(17,51,29,24)(25,56,53,45)(30,41,59,63)(32,37,55,60)(33,57,44,40)(43,64,52,62)(48,58,50,54)', '(1,6)(2,13)(3,16)(4,19)(5,22)(7,28)(8,25)(9,32)(10,35)(11,37)(12,39)(14,43)(15,46)(17,50)(18,26)(20,53)(21,49)(23,55)(24,54)(27,45)(29,48)(30,33)(31,60)(34,42)(36,52)(38,62)(40,41)(44,59)(47,56)(51,58)(57,63)(61,64)', '(2,11,9,12)(3,7)(5,15,18,21)(6,25)(10,31,23,34)(13,41,32,62)(14,38,33,40)(16,48)(17,29)(19,53)(22,45,26,56)(24,47,51,27)(28,50)(30,37,43,39)(35,63,55,64)(36,61,44,57)(42,59,60,52)(46,54,49,58)', '(6,16)(8,29)(13,32)(14,44)(17,20)(19,28)(22,46)(24,27)(25,53)(26,49)(30,59)(33,36)(35,55)(37,42)(38,40)(39,60)(41,63)(43,52)(45,56)(47,51)(48,50)(54,58)(57,61)(62,64)', '(2,10)(5,21)(9,23)(11,34)(12,31)(13,35)(14,36)(15,18)(22,49)(24,27)(26,46)(30,59)(32,55)(33,44)(37,42)(38,57)(39,60)(40,61)(41,64)(43,52)(45,54)(47,51)(56,58)(62,63)', '(1,4)(2,10)(3,7)(5,18)(6,19)(8,20)(9,23)(11,31)(12,34)(13,35)(14,36)(15,21)(16,28)(17,29)(22,26)(24,51)(25,53)(27,47)(30,59)(32,55)(33,44)(37,60)(38,61)(39,42)(40,57)(41,63)(43,52)(45,56)(46,49)(48,50)(54,58)(62,64)', '(1,2,3,9)(4,10,7,23)(5,12,15,31)(6,13,16,32)(8,14,17,33)(11,18,34,21)(19,35,28,55)(20,36,29,44)(22,39,46,60)(24,40,47,61)(25,43,50,30)(26,42,49,37)(27,38,51,57)(41,56,64,54)(45,62,58,63)(48,59,53,52)', '(2,9)(5,18)(10,23)(11,12)(13,32)(14,33)(15,21)(22,26)(24,51)(27,47)(30,43)(31,34)(35,55)(36,44)(37,39)(38,40)(41,62)(42,60)(45,56)(46,49)(52,59)(54,58)(57,61)(63,64)', '(65,66)', '(1,8)(2,14)(3,17)(4,20)(5,24)(6,25)(7,29)(9,33)(10,36)(11,38)(12,40)(13,43)(15,47)(16,50)(18,51)(19,53)(21,27)(22,54)(23,44)(26,58)(28,48)(30,32)(31,61)(34,57)(35,52)(37,62)(39,41)(42,63)(45,49)(46,56)(55,59)(60,64)(65,66)', '(1,7,3)(2,11,5,23,31,15)(6,27,48,60,29,59,16,24,50,39,8,30)(9,12,18,10,34,21)(13,33,54,49,61,64,32,36,58,26,57,62)(14,45,46,40,63,55,44,56,22,38,41,35)(17,52,19,51,25,37,20,43,28,47,53,42)', '(1,3)(2,9)(4,7)(5,15)(6,16)(8,17)(10,23)(11,34)(12,31)(13,32)(14,33)(18,21)(19,28)(20,29)(22,46)(24,47)(25,50)(26,49)(27,51)(30,43)(35,55)(36,44)(37,42)(38,57)(39,60)(40,61)(41,64)(45,58)(48,53)(52,59)(54,56)(62,63)'])
 
Direct product: $C_2$ $\, \times\, $ $((C_2\times C_4^3).\GL(2,\mathbb{Z}/4))$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^7$ . $(C_2^3:S_4)$ $C_2^6$ . $(C_2^4:S_4)$ (2) $C_2^5$ . $(C_2^5:S_4)$ $C_2^5$ . $(C_2\wr D_6)$ (4) all 90
Aut. group: $\Aut(C_4^2.(C_2\times D_6))$ $\Aut(C_2^6:A_4)$ $\Aut(C_4^3:A_4)$ $\Aut(C_4^3:A_4)$ all 9

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{9}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 214 normal subgroups (112 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $(C_2\times C_4^3).\GL(2,\mathbb{Z}/4)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_4^2:A_4.C_2^3$ $G/G' \simeq$ $C_2^4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_4^2:C_2^3$ $G/\Phi \simeq$ $C_2^3\times S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2\times C_4^2.C_2^6.C_2$ $G/\operatorname{Fit} \simeq$ $S_3$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $(C_2^2\times C_4^3).\GL(2,\mathbb{Z}/4)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^3$ $G/\operatorname{soc} \simeq$ $C_2^5:\GL(2,\mathbb{Z}/4)$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\times C_2^2.C_2^6.C_2^4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

Series

Derived series $(C_2^2\times C_4^3).\GL(2,\mathbb{Z}/4)$ $\rhd$ $C_4^2:A_4.C_2^3$ $\rhd$ $C_4^2:C_2^2$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $(C_2^2\times C_4^3).\GL(2,\mathbb{Z}/4)$ $\rhd$ $C_2\times C_4^2.C_2^4.C_6.C_2^2$ $\rhd$ $C_2\times C_4^2.C_2^4.C_6.C_2$ $\rhd$ $C_4^2.C_2^4.C_6.C_2$ $\rhd$ $C_4^2:A_4.C_2^3$ $\rhd$ $C_4^2:A_4.C_2^2$ $\rhd$ $(C_2\times C_4^2):A_4$ $\rhd$ $C_4^2:A_4$ $\rhd$ $C_4^2:C_2^2$ $\rhd$ $C_4^2$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $(C_2^2\times C_4^3).\GL(2,\mathbb{Z}/4)$ $\rhd$ $C_4^2:A_4.C_2^3$ $\rhd$ $(C_2\times C_4^2):A_4$ $\rhd$ $C_4^2:A_4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $156 \times 156$ character table is not available for this group.

Rational character table

The $148 \times 148$ rational character table is not available for this group.