Properties

Label 243...000.b
Order \( 2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Exponent \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $22$
Trans deg. $40$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 22 | (1,2,3,4,6,10,7)(5,8,12,17,15,18,19,20,13,16,9,14,11), (2,4,7,6,11,8,13,17,12,18,10,16,3,5,9,15,19)(21,22) >;
 
Copy content gap:G := Group( (1,2,3,4,6,10,7)(5,8,12,17,15,18,19,20,13,16,9,14,11), (2,4,7,6,11,8,13,17,12,18,10,16,3,5,9,15,19)(21,22) );
 
Copy content sage:G = PermutationGroup(['(1,2,3,4,6,10,7)(5,8,12,17,15,18,19,20,13,16,9,14,11)', '(2,4,7,6,11,8,13,17,12,18,10,16,3,5,9,15,19)(21,22)'])
 

Group information

Description:$C_2.A_{20}$
Order: \(2432902008176640000\)\(\medspace = 2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(232792560\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2432902008176640000\)\(\medspace = 2^{18} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $A_{20}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 26 28 30 33 34 35 36 38 39 40 42 44 45 51 52 55 56 60 63 65 66 70 72 77 78 84 90 91 99 102 105 110 120 126 130 132 140 154 165 168 180 182 198 210 330
Elements 1 23596729471 3044269834280 294446829974400 189239120970624 8603851448997080 34479959558400 13959955250841600 8470676211379200 34141660851659904 609493248000 131396469228460800 37132204032000 17649640228550400 61842055316670720 152056375511040000 23851980472320000 171569240896435200 128047474114560000 44250550689945600 3030432354892800 1613328627456000 108759194159616000 7834895050752000 53168011573248000 190088668518577920 3515557054464000 23851980472320000 6125354900121600 45616912653312000 128047474114560000 12996271411200000 44603203483238400 142770777803596800 23038844774400000 11488703927500800 47703960944640000 46786577080320000 1843107581952000 28963119144960000 80496017060659200 14481559572480000 18714630832128000 49593246603264000 41967214842009600 33790305669120000 15798064988160000 28591797104640000 25342729251840000 18246765061324800 26735186903040000 24574767759360000 47703960944640000 4441011602227200 12901753073664000 40548366802944000 24135932620800000 18714630832128000 18431075819520000 13033403615232000 15798064988160000 14744860655616000 14481559572480000 13516122267648000 26735186903040000 24574767759360000 21818883089203200 14744860655616000 2432902008176640000
Conjugacy classes   1 11 6 24 4 66 2 20 5 26 1 82 1 14 13 4 1 21 2 26 6 5 30 3 12 61 3 1 3 12 2 2 10 26 4 4 2 2 1 4 30 3 1 7 9 2 1 4 12 6 2 2 2 3 3 6 5 1 2 4 1 2 2 2 2 2 7 2 648
Divisions 1 11 6 24 4 66 2 20 5 26 1 82 1 14 12 4 1 21 1 26 6 5 30 3 12 60 3 1 3 12 1 2 10 26 4 4 1 2 1 4 30 2 1 7 9 2 1 4 12 6 1 1 1 3 3 6 4 1 2 4 1 1 2 2 1 1 7 1 634
Autjugacy classes 1 11 6 24 4 66 2 20 5 26 1 82 1 14 12 4 1 21 1 26 6 5 30 3 12 60 3 1 3 12 1 2 10 26 4 4 1 2 1 4 30 2 1 7 9 2 1 4 12 6 1 1 1 3 3 6 4 1 2 4 1 1 2 2 1 1 7 1 634

Minimal presentations

Permutation degree:$22$
Transitive degree:$40$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 19 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $22$ $\langle(1,2,3,4,6,10,7)(5,8,12,17,15,18,19,20,13,16,9,14,11), (2,4,7,6,11,8,13,17,12,18,10,16,3,5,9,15,19)(21,22)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 22 | (1,2,3,4,6,10,7)(5,8,12,17,15,18,19,20,13,16,9,14,11), (2,4,7,6,11,8,13,17,12,18,10,16,3,5,9,15,19)(21,22) >;
 
Copy content gap:G := Group( (1,2,3,4,6,10,7)(5,8,12,17,15,18,19,20,13,16,9,14,11), (2,4,7,6,11,8,13,17,12,18,10,16,3,5,9,15,19)(21,22) );
 
Copy content sage:G = PermutationGroup(['(1,2,3,4,6,10,7)(5,8,12,17,15,18,19,20,13,16,9,14,11)', '(2,4,7,6,11,8,13,17,12,18,10,16,3,5,9,15,19)(21,22)'])
 
Transitive group: 40T315648 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $A_{20}$ . $C_2$ $C_2$ . $A_{20}$ more information

Elements of the group are displayed as permutations of degree 22.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 4 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $A_{20}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\times C_2^5.C_2^5.C_2^4.C_2^3$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4.C_3^4$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^4$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^2$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}$
13-Sylow subgroup: $P_{ 13 } \simeq$ $C_{13}$
17-Sylow subgroup: $P_{ 17 } \simeq$ $C_{17}$
19-Sylow subgroup: $P_{ 19 } \simeq$ $C_{19}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $648 \times 648$ character table is not available for this group.

Rational character table

The $634 \times 634$ rational character table is not available for this group.