Properties

Label 2400000000.gf
Order \( 2^{11} \cdot 3 \cdot 5^{8} \)
Exponent \( 2^{4} \cdot 3 \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{11} \cdot 3 \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 1 \)
Perm deg. $40$
Trans deg. $40$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,12,36,6,5,14,40,7,2,15,37,10,3,13,38,9)(4,11,39,8)(16,31,22,30,19,33,23,28,18,34,21,27,20,32,25,29)(17,35,24,26), (1,26)(2,28)(3,30)(4,27)(5,29)(6,19,37,25,12,31,7,18,38,21,11,32,8,17,39,22,15,33,9,16,40,23,14,34,10,20,36,24,13,35), (1,38,10,12,2,39,6,15,4,36,8,11,3,40,7,13)(5,37,9,14)(16,29,35,24,17,26,34,25,19,30,32,22,18,28,33,21)(20,27,31,23) >;
 
Copy content gap:G := Group( (1,12,36,6,5,14,40,7,2,15,37,10,3,13,38,9)(4,11,39,8)(16,31,22,30,19,33,23,28,18,34,21,27,20,32,25,29)(17,35,24,26), (1,26)(2,28)(3,30)(4,27)(5,29)(6,19,37,25,12,31,7,18,38,21,11,32,8,17,39,22,15,33,9,16,40,23,14,34,10,20,36,24,13,35), (1,38,10,12,2,39,6,15,4,36,8,11,3,40,7,13)(5,37,9,14)(16,29,35,24,17,26,34,25,19,30,32,22,18,28,33,21)(20,27,31,23) );
 
Copy content sage:G = PermutationGroup(['(1,12,36,6,5,14,40,7,2,15,37,10,3,13,38,9)(4,11,39,8)(16,31,22,30,19,33,23,28,18,34,21,27,20,32,25,29)(17,35,24,26)', '(1,26)(2,28)(3,30)(4,27)(5,29)(6,19,37,25,12,31,7,18,38,21,11,32,8,17,39,22,15,33,9,16,40,23,14,34,10,20,36,24,13,35)', '(1,38,10,12,2,39,6,15,4,36,8,11,3,40,7,13)(5,37,9,14)(16,29,35,24,17,26,34,25,19,30,32,22,18,28,33,21)(20,27,31,23)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(23869530331590697224845883647462999776421577520101409905435391224541352094212453117991763559703511681979218180400955843831582197348775455747710973043636434120349214653144603155367374148351932359090161910715335815403510375349722684982034675131613586721104175058308342619896278776887986457809677218055618727457945245101945938816823790518592632317548337669865532121247968523455009914673566924124190284722924820042618989769363162110978948145921775297457710221897266475265678131159044067701349891587210293866568848475547013339470384661577120961973809906243885903612498027988199616539885997583439293162117253295762431915448851464872891116601179313979530297137216345102584012552137324737797530968527148500167679727630630174210233650669573555982519753924416154988168133770083673494137213113785514657318937426378947090630526968606746195415158575791341470344743901290925164148715173956038763651552100638454079176289658338468509301567712900309810850307561221206205044816557635410080866529211256763332790332934832577712228669852256456907302485042859112687166823835310209860989462647764409854878074048566851820402423311448243596730693355829745183338590542239612563646468870167838124852163923182478877307907507730229530025902003469713746454974588794914959047691935472385068496811904515385371642901134037404468215434832017138382341648023688814513934626196816813757334788632200155148079722215991989857926877775565238321621845750849074422517534224466120101779418310424257620326992621563463523332713388269269526829099969569441692776390353974824759105497868454400190491647389774538542206348110238231434575871,2400000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.10; f = G.13; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19; l = G.20;
 

Group information

Description:$C_5^4.(D_5^4.\GL(2,3)).D_4$
Order: \(2400000000\)\(\medspace = 2^{11} \cdot 3 \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2400000000\)\(\medspace = 2^{11} \cdot 3 \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 11, $C_3$, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 8 10 12 15 16 20 24 30 60
Elements 1 516975 20000 102970000 390624 19500000 400000000 42842400 272000000 12480000 600000000 453280000 200000000 168000000 128000000 2400000000
Conjugacy classes   1 11 1 47 105 7 22 111 16 17 20 152 4 19 12 545
Divisions 1 11 1 28 105 7 14 111 10 11 5 77 2 16 5 404
Autjugacy classes 1 11 1 47 105 7 22 111 16 17 20 152 4 19 12 545

Minimal presentations

Permutation degree:$40$
Transitive degree:$40$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid d^{8}=e^{20}=f^{10}=g^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([20, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 5, 2, 5, 5, 5, 5, 5, 5, 5, 40, 28117720341, 45210507602, 51769219102, 162, 22535160323, 71459624023, 14349745983, 97395482404, 58186170024, 38884602044, 27974471164, 284, 110663199365, 96366553945, 36919624365, 4372468625, 4697580585, 44666432166, 59899976666, 20135603926, 27625641606, 7998936486, 4068925666, 406, 285300887047, 27336913947, 48137627567, 27305257987, 7676993367, 7671726827, 467, 342482480648, 182095568668, 74503635888, 15364071428, 14360881048, 5404275468, 352769020809, 210555916829, 46429250449, 35014038069, 1856035289, 4269878509, 222529729, 20781749, 330915769, 589, 400126003210, 59721446430, 125169221810, 64353611590, 4089747290, 7939479790, 3857571650, 2004370870, 12961690, 650, 32138035211, 212023296031, 7252992051, 7338977351, 23250432091, 6709125231, 3354555011, 7831, 7851, 474137027532, 196659690272, 52250905252, 67572381312, 14382455452, 637561712, 504574852, 837553752, 1609909772, 179290992, 137839212, 772, 12377702413, 81650688033, 154010357813, 19373061193, 20306944093, 7907737713, 3953976453, 89753, 89773, 332124993, 302120213, 286601011214, 145600819234, 112592102454, 37324108874, 6050380894, 13747200114, 4196764934, 3634320154, 480174, 529776194, 26004214, 23697254, 650519838735, 366287585315, 164460380215, 39910686795, 18599198815, 14655488115, 437381255, 3873280155, 2560175, 566118595, 27865815, 25248255, 374573506576, 92589496356, 6285158456, 72671001676, 3439994976, 8670272116, 2129216136, 20400156, 13600176, 788732196, 148512216, 340256, 354661908497, 144201461797, 83181772857, 89437132877, 20126960737, 17778816117, 312192137, 108000157, 72000177, 289296197, 279216217, 1800257, 229951242258, 234919526438, 12728309818, 48535034958, 37930444898, 9302400118, 7666916618, 2900160158, 380000178, 568601798, 307906618, 49286258, 671839027219, 219115315239, 239809536059, 45041971279, 22446284899, 1912320119, 4214323339, 1958400159, 2000000179, 297024199, 132776219, 44740259]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.3, G.5, G.7, G.10, G.13, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "d4", "e", "e2", "e4", "f", "f2", "g", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(23869530331590697224845883647462999776421577520101409905435391224541352094212453117991763559703511681979218180400955843831582197348775455747710973043636434120349214653144603155367374148351932359090161910715335815403510375349722684982034675131613586721104175058308342619896278776887986457809677218055618727457945245101945938816823790518592632317548337669865532121247968523455009914673566924124190284722924820042618989769363162110978948145921775297457710221897266475265678131159044067701349891587210293866568848475547013339470384661577120961973809906243885903612498027988199616539885997583439293162117253295762431915448851464872891116601179313979530297137216345102584012552137324737797530968527148500167679727630630174210233650669573555982519753924416154988168133770083673494137213113785514657318937426378947090630526968606746195415158575791341470344743901290925164148715173956038763651552100638454079176289658338468509301567712900309810850307561221206205044816557635410080866529211256763332790332934832577712228669852256456907302485042859112687166823835310209860989462647764409854878074048566851820402423311448243596730693355829745183338590542239612563646468870167838124852163923182478877307907507730229530025902003469713746454974588794914959047691935472385068496811904515385371642901134037404468215434832017138382341648023688814513934626196816813757334788632200155148079722215991989857926877775565238321621845750849074422517534224466120101779418310424257620326992621563463523332713388269269526829099969569441692776390353974824759105497868454400190491647389774538542206348110238231434575871,2400000000); a := G.1; b := G.3; c := G.5; d := G.7; e := G.10; f := G.13; g := G.15; h := G.16; i := G.17; j := G.18; k := G.19; l := G.20;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(23869530331590697224845883647462999776421577520101409905435391224541352094212453117991763559703511681979218180400955843831582197348775455747710973043636434120349214653144603155367374148351932359090161910715335815403510375349722684982034675131613586721104175058308342619896278776887986457809677218055618727457945245101945938816823790518592632317548337669865532121247968523455009914673566924124190284722924820042618989769363162110978948145921775297457710221897266475265678131159044067701349891587210293866568848475547013339470384661577120961973809906243885903612498027988199616539885997583439293162117253295762431915448851464872891116601179313979530297137216345102584012552137324737797530968527148500167679727630630174210233650669573555982519753924416154988168133770083673494137213113785514657318937426378947090630526968606746195415158575791341470344743901290925164148715173956038763651552100638454079176289658338468509301567712900309810850307561221206205044816557635410080866529211256763332790332934832577712228669852256456907302485042859112687166823835310209860989462647764409854878074048566851820402423311448243596730693355829745183338590542239612563646468870167838124852163923182478877307907507730229530025902003469713746454974588794914959047691935472385068496811904515385371642901134037404468215434832017138382341648023688814513934626196816813757334788632200155148079722215991989857926877775565238321621845750849074422517534224466120101779418310424257620326992621563463523332713388269269526829099969569441692776390353974824759105497868454400190491647389774538542206348110238231434575871,2400000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.10; f = G.13; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19; l = G.20;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(23869530331590697224845883647462999776421577520101409905435391224541352094212453117991763559703511681979218180400955843831582197348775455747710973043636434120349214653144603155367374148351932359090161910715335815403510375349722684982034675131613586721104175058308342619896278776887986457809677218055618727457945245101945938816823790518592632317548337669865532121247968523455009914673566924124190284722924820042618989769363162110978948145921775297457710221897266475265678131159044067701349891587210293866568848475547013339470384661577120961973809906243885903612498027988199616539885997583439293162117253295762431915448851464872891116601179313979530297137216345102584012552137324737797530968527148500167679727630630174210233650669573555982519753924416154988168133770083673494137213113785514657318937426378947090630526968606746195415158575791341470344743901290925164148715173956038763651552100638454079176289658338468509301567712900309810850307561221206205044816557635410080866529211256763332790332934832577712228669852256456907302485042859112687166823835310209860989462647764409854878074048566851820402423311448243596730693355829745183338590542239612563646468870167838124852163923182478877307907507730229530025902003469713746454974588794914959047691935472385068496811904515385371642901134037404468215434832017138382341648023688814513934626196816813757334788632200155148079722215991989857926877775565238321621845750849074422517534224466120101779418310424257620326992621563463523332713388269269526829099969569441692776390353974824759105497868454400190491647389774538542206348110238231434575871,2400000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.10; f = G.13; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19; l = G.20;
 
Permutation group:Degree $40$ $\langle(1,12,36,6,5,14,40,7,2,15,37,10,3,13,38,9)(4,11,39,8)(16,31,22,30,19,33,23,28,18,34,21,27,20,32,25,29) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,12,36,6,5,14,40,7,2,15,37,10,3,13,38,9)(4,11,39,8)(16,31,22,30,19,33,23,28,18,34,21,27,20,32,25,29)(17,35,24,26), (1,26)(2,28)(3,30)(4,27)(5,29)(6,19,37,25,12,31,7,18,38,21,11,32,8,17,39,22,15,33,9,16,40,23,14,34,10,20,36,24,13,35), (1,38,10,12,2,39,6,15,4,36,8,11,3,40,7,13)(5,37,9,14)(16,29,35,24,17,26,34,25,19,30,32,22,18,28,33,21)(20,27,31,23) >;
 
Copy content gap:G := Group( (1,12,36,6,5,14,40,7,2,15,37,10,3,13,38,9)(4,11,39,8)(16,31,22,30,19,33,23,28,18,34,21,27,20,32,25,29)(17,35,24,26), (1,26)(2,28)(3,30)(4,27)(5,29)(6,19,37,25,12,31,7,18,38,21,11,32,8,17,39,22,15,33,9,16,40,23,14,34,10,20,36,24,13,35), (1,38,10,12,2,39,6,15,4,36,8,11,3,40,7,13)(5,37,9,14)(16,29,35,24,17,26,34,25,19,30,32,22,18,28,33,21)(20,27,31,23) );
 
Copy content sage:G = PermutationGroup(['(1,12,36,6,5,14,40,7,2,15,37,10,3,13,38,9)(4,11,39,8)(16,31,22,30,19,33,23,28,18,34,21,27,20,32,25,29)(17,35,24,26)', '(1,26)(2,28)(3,30)(4,27)(5,29)(6,19,37,25,12,31,7,18,38,21,11,32,8,17,39,22,15,33,9,16,40,23,14,34,10,20,36,24,13,35)', '(1,38,10,12,2,39,6,15,4,36,8,11,3,40,7,13)(5,37,9,14)(16,29,35,24,17,26,34,25,19,30,32,22,18,28,33,21)(20,27,31,23)'])
 
Transitive group: 40T254021 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.C_4.C_2.C_2^5)$ . $S_4$ $(C_5^8.\OD_{16})$ . $(C_2^4.S_4)$ (3) $(C_5^4.D_5^4.Q_8)$ . $(D_4:S_3)$ $(C_5^8.C_2^4.C_2)$ . $(D_4.S_4)$ all 76
Aut. group: $\Aut(C_5^4.D_5^4.\SL(2,3))$ $\Aut(C_5^4.D_5^4.(C_2\times \SL(2,3)))$ $\Aut(C_5^4.(C_2\times D_5^4.\SL(2,3)))$

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 102 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_5^4.D_5^4.\SL(2,3)$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $(C_2\times C_4).C_2^4.C_2^4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $545 \times 545$ character table is not available for this group.

Rational character table

The $404 \times 404$ rational character table is not available for this group.