Properties

Label 24000000.bf
Order \( 2^{9} \cdot 3 \cdot 5^{6} \)
Exponent \( 2^{2} \cdot 3 \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{12} \cdot 3 \cdot 5^{6} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $30$
Trans deg. $30$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 30 | (1,15,26,4,11,30,5,13,28,2,12,29)(3,14,27)(6,18,25,10,16,21,8,17,23,9,19,22)(7,20,24), (1,3,4,2)(6,7,9,8)(22,24,25,23)(26,29,30,27), (1,2,4,3)(6,7,9,8)(11,20)(12,18)(13,16)(14,19)(15,17)(21,28)(22,26)(23,29)(24,27)(25,30) >;
 
Copy content gap:G := Group( (1,15,26,4,11,30,5,13,28,2,12,29)(3,14,27)(6,18,25,10,16,21,8,17,23,9,19,22)(7,20,24), (1,3,4,2)(6,7,9,8)(22,24,25,23)(26,29,30,27), (1,2,4,3)(6,7,9,8)(11,20)(12,18)(13,16)(14,19)(15,17)(21,28)(22,26)(23,29)(24,27)(25,30) );
 
Copy content sage:G = PermutationGroup(['(1,15,26,4,11,30,5,13,28,2,12,29)(3,14,27)(6,18,25,10,16,21,8,17,23,9,19,22)(7,20,24)', '(1,3,4,2)(6,7,9,8)(22,24,25,23)(26,29,30,27)', '(1,2,4,3)(6,7,9,8)(11,20)(12,18)(13,16)(14,19)(15,17)(21,28)(22,26)(23,29)(24,27)(25,30)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(896558872953163089176451771953333452814047453755274158937376471315935186012249648836100697466298238462413533822821598485206725164701581253273387191701848337787272695186359658306058406197492075010106653179571565078455606400936149992231072331015828000550764905382279703409334333913967247349747841680542569917073080941431365538819811833779973075202596568194711319257220031856725968000441816229459281213734309568827880808230740331970896854203276607191560803729964917443786091271630538236157055918323043117057113121259258922234985075203051044240238702730489540281283197587579841878364607573962305727707375116570949750836294374586536698392751792619491096049834480695758305643057091708666943081185401914053255056318619424052695428366093724745509122284725920780561289338246706423328310754119808029285749807563453256084892392435076159303321892508429603691515430965204735167873279,24000000)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16;
 

Group information

Description:$C_5^6:((C_2\times C_4^3).A_4)$
Order: \(24000000\)\(\medspace = 2^{9} \cdot 3 \cdot 5^{6} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_5^6.C_2^3.C_2^4.C_6.C_4.C_2^2$, of order \(192000000\)\(\medspace = 2^{12} \cdot 3 \cdot 5^{6} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 9, $C_3$, $C_5$ x 6
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 10 12 15 20 30
Elements 1 30575 80000 2976400 15624 2800000 1703800 8000000 1920000 3273600 3200000 24000000
Conjugacy classes   1 9 2 38 28 6 60 8 8 76 4 240
Divisions 1 9 1 28 28 3 60 2 4 54 2 192
Autjugacy classes 1 6 1 25 12 2 21 3 2 30 1 104

Minimal presentations

Permutation degree:$30$
Transitive degree:$30$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid c^{4}=f^{4}=g^{10}=h^{5}=i^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([16, 2, 3, 2, 2, 2, 2, 5, 2, 5, 2, 2, 2, 5, 5, 5, 5, 32, 222904721, 268619906, 405166050, 61209826, 1219315971, 91233043, 56320419, 179, 923314564, 379776020, 66560356, 1408110341, 438128085, 343960741, 181479605, 39169797, 277, 1167882246, 692973142, 149470758, 36201142, 1569862, 392102, 1030501639, 738302615, 161232935, 234224695, 106519111, 8664407, 12083943, 375, 155108744, 1359059928, 414038056, 27325496, 131178312, 70542808, 30471944, 2472616, 647782089, 1737523705, 449664041, 257856057, 32032073, 38480089, 3144105, 5880121, 39337, 473, 135848074, 1360476506, 560102442, 131366458, 74694474, 19606490, 35358506, 8324922, 1607018, 2558605835, 1502484507, 560947243, 233164859, 76953675, 3609691, 38745707, 9438843, 1071499, 865691, 11307, 571, 998400012, 1714352668, 37273644, 2662460, 332892, 332908, 1314684, 33420, 169884, 3500, 4768124941, 331161629, 28672045, 275968061, 7168077, 25984093, 179325, 179341, 259997, 18093, 9149, 3594240014, 1768561950, 76800046, 76800062, 9600094, 9600110, 499326, 960142, 144158, 96174, 4219944975, 137625631, 819200047, 307200063, 204800079, 8089727, 5120143, 286879, 512175, 256191]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.3, G.4, G.6, G.8, G.10, G.12, G.14, G.15, G.16]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(896558872953163089176451771953333452814047453755274158937376471315935186012249648836100697466298238462413533822821598485206725164701581253273387191701848337787272695186359658306058406197492075010106653179571565078455606400936149992231072331015828000550764905382279703409334333913967247349747841680542569917073080941431365538819811833779973075202596568194711319257220031856725968000441816229459281213734309568827880808230740331970896854203276607191560803729964917443786091271630538236157055918323043117057113121259258922234985075203051044240238702730489540281283197587579841878364607573962305727707375116570949750836294374586536698392751792619491096049834480695758305643057091708666943081185401914053255056318619424052695428366093724745509122284725920780561289338246706423328310754119808029285749807563453256084892392435076159303321892508429603691515430965204735167873279,24000000); a := G.1; b := G.3; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.15; j := G.16;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(896558872953163089176451771953333452814047453755274158937376471315935186012249648836100697466298238462413533822821598485206725164701581253273387191701848337787272695186359658306058406197492075010106653179571565078455606400936149992231072331015828000550764905382279703409334333913967247349747841680542569917073080941431365538819811833779973075202596568194711319257220031856725968000441816229459281213734309568827880808230740331970896854203276607191560803729964917443786091271630538236157055918323043117057113121259258922234985075203051044240238702730489540281283197587579841878364607573962305727707375116570949750836294374586536698392751792619491096049834480695758305643057091708666943081185401914053255056318619424052695428366093724745509122284725920780561289338246706423328310754119808029285749807563453256084892392435076159303321892508429603691515430965204735167873279,24000000)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(896558872953163089176451771953333452814047453755274158937376471315935186012249648836100697466298238462413533822821598485206725164701581253273387191701848337787272695186359658306058406197492075010106653179571565078455606400936149992231072331015828000550764905382279703409334333913967247349747841680542569917073080941431365538819811833779973075202596568194711319257220031856725968000441816229459281213734309568827880808230740331970896854203276607191560803729964917443786091271630538236157055918323043117057113121259258922234985075203051044240238702730489540281283197587579841878364607573962305727707375116570949750836294374586536698392751792619491096049834480695758305643057091708666943081185401914053255056318619424052695428366093724745509122284725920780561289338246706423328310754119808029285749807563453256084892392435076159303321892508429603691515430965204735167873279,24000000)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16;
 
Permutation group:Degree $30$ $\langle(1,15,26,4,11,30,5,13,28,2,12,29)(3,14,27)(6,18,25,10,16,21,8,17,23,9,19,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 30 | (1,15,26,4,11,30,5,13,28,2,12,29)(3,14,27)(6,18,25,10,16,21,8,17,23,9,19,22)(7,20,24), (1,3,4,2)(6,7,9,8)(22,24,25,23)(26,29,30,27), (1,2,4,3)(6,7,9,8)(11,20)(12,18)(13,16)(14,19)(15,17)(21,28)(22,26)(23,29)(24,27)(25,30) >;
 
Copy content gap:G := Group( (1,15,26,4,11,30,5,13,28,2,12,29)(3,14,27)(6,18,25,10,16,21,8,17,23,9,19,22)(7,20,24), (1,3,4,2)(6,7,9,8)(22,24,25,23)(26,29,30,27), (1,2,4,3)(6,7,9,8)(11,20)(12,18)(13,16)(14,19)(15,17)(21,28)(22,26)(23,29)(24,27)(25,30) );
 
Copy content sage:G = PermutationGroup(['(1,15,26,4,11,30,5,13,28,2,12,29)(3,14,27)(6,18,25,10,16,21,8,17,23,9,19,22)(7,20,24)', '(1,3,4,2)(6,7,9,8)(22,24,25,23)(26,29,30,27)', '(1,2,4,3)(6,7,9,8)(11,20)(12,18)(13,16)(14,19)(15,17)(21,28)(22,26)(23,29)(24,27)(25,30)'])
 
Transitive group: 30T3460 30T3606 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $C_5^6$ $\,\rtimes\,$ $((C_2\times C_4^3).A_4)$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^6:(C_4^3.A_4))$ . $C_2$ $(C_5^6:(C_4^3.A_4))$ . $C_2$ $(C_5^6.C_2^4.C_2^3)$ . $A_4$ (3) $(C_5^6.C_2^4.C_2^4)$ . $C_6$ (3) all 20

Elements of the group are displayed as permutations of degree 30.

Homology

Abelianization: $C_{2} \times C_{6} \simeq C_{2}^{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3} \times C_{4}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 47 normal subgroups (25 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_5^6:((C_2\times C_4^3).A_4)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_5^6.C_2.Q_8^2$ $G/G' \simeq$ $C_2\times C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_5^6:((C_2\times C_4^3).A_4)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_5^6$ $G/\operatorname{Fit} \simeq$ $(C_2\times C_4^3).A_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_5^6:((C_2\times C_4^3).A_4)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_5^6$ $G/\operatorname{soc} \simeq$ $(C_2\times C_4^3).A_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4^3.C_2^3$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^6$

Subgroup diagram and profile

Series

Derived series $C_5^6:((C_2\times C_4^3).A_4)$ $\rhd$ $C_5^6.C_2.Q_8^2$ $\rhd$ $C_5^6.C_2^3$ $\rhd$ $C_5^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_5^6:((C_2\times C_4^3).A_4)$ $\rhd$ $C_5^6:((C_2^2\times C_4^2).A_4)$ $\rhd$ $C_5^6:(C_2^2\times Q_8).A_4$ $\rhd$ $C_5^6.C_2.Q_8^2$ $\rhd$ $C_5^5.D_{10}.C_2^3$ $\rhd$ $C_5^6.C_2^3$ $\rhd$ $C_5^6:C_2$ $\rhd$ $C_5^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_5^6:((C_2\times C_4^3).A_4)$ $\rhd$ $C_5^6.C_2.Q_8^2$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 8 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $240 \times 240$ character table is not available for this group.

Rational character table

The $192 \times 192$ rational character table is not available for this group.