Properties

Label 225792.a
Order \( 2^{9} \cdot 3^{2} \cdot 7^{2} \)
Exponent \( 2^{4} \cdot 3 \cdot 7 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{11} \cdot 3^{2} \cdot 7^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $128$
Trans deg. $128$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 128 | (2,10)(3,15)(5,23)(6,29)(7,36)(8,41)(9,46)(11,52)(12,50)(13,22)(14,60)(17,25)(18,73)(19,64)(20,78)(21,65)(24,82)(26,68)(27,92)(28,94)(30,57)(31,59)(32,69)(33,102)(34,95)(35,86)(37,51)(38,100)(39,74)(40,71)(43,87)(44,62)(45,49)(47,55)(48,106)(54,70)(56,97)(58,79)(61,72)(63,105)(66,83)(75,90)(76,104)(77,89)(81,88)(84,120)(85,110)(91,116)(93,107)(96,118)(98,119)(101,103)(114,117)(115,124)(121,125)(126,127), (1,4)(2,9,45,114,56,12)(5,22,79,125,88,26)(6,28,93,62,14,32)(7,35,17,55,110,38)(8,40,95,54,11,43)(10,46,49,117,97,50)(13,58,121,81,68,23)(16,67)(19,61,33,101,96,30)(20,77,124,98,31,63)(21,76,126,120,83,24)(25,47,85,100,36,86)(27,91,106,37,75,74)(29,94,107,44,60,69)(34,70,52,87,41,71)(39,92,116,48,51,90)(42,111,112,53,109,113)(57,64,72,102,103,118)(59,105,78,89,115,119)(65,104,127,84,66,82)(80,122,128,108,123,99), (1,2,7,33,77,41,39,73,32,99,52,30,6,27,89,125,62,116,112,96,93,44,49,22,31,97,75,19,4,17,56,79,28,54,65,15,63,109,40,26,20,76,94,101,98,127,108,88,124,119,85,61,14,36,24,5)(3,13,57,67,18,72,68,16)(8,12,11,51,38,107,84,25,46,21,9,43,29,87,91,106,90,117,50,105,37,104,113,110,128,123,59,122,70,35,71,66,114,115,48,10,47,74,55,34,78,95,126,120,82,100,86,69,83,92,80,45,111,53,60,42)(23,58,103,118,64,102,121,81), (1,3,14,20,4,18,31,6)(2,8,39,110,125,104,86,97,83,56,43,26,87,91,27,90,49,10,19,74,84,109,38,108,122,61,123,71,17,70,65,45,101,92,50,36,37,7,34,30,95,126,76,82,85,25,5,21,48,99,114,112,42,22,53,11)(9,44,81,40,66,15,64,113,54,29,57,120,88,115,102,127,128,94,103,33,100,59,13,47,24,69,16,12,55,119,118,52,51,73,23,80,41,78,68,106,96,107,58,116,111,89,121,79,117,60,72,46,75,105,67,35)(28,32,62,124,77,63,98,93) >;
 
Copy content gap:G := Group( (2,10)(3,15)(5,23)(6,29)(7,36)(8,41)(9,46)(11,52)(12,50)(13,22)(14,60)(17,25)(18,73)(19,64)(20,78)(21,65)(24,82)(26,68)(27,92)(28,94)(30,57)(31,59)(32,69)(33,102)(34,95)(35,86)(37,51)(38,100)(39,74)(40,71)(43,87)(44,62)(45,49)(47,55)(48,106)(54,70)(56,97)(58,79)(61,72)(63,105)(66,83)(75,90)(76,104)(77,89)(81,88)(84,120)(85,110)(91,116)(93,107)(96,118)(98,119)(101,103)(114,117)(115,124)(121,125)(126,127), (1,4)(2,9,45,114,56,12)(5,22,79,125,88,26)(6,28,93,62,14,32)(7,35,17,55,110,38)(8,40,95,54,11,43)(10,46,49,117,97,50)(13,58,121,81,68,23)(16,67)(19,61,33,101,96,30)(20,77,124,98,31,63)(21,76,126,120,83,24)(25,47,85,100,36,86)(27,91,106,37,75,74)(29,94,107,44,60,69)(34,70,52,87,41,71)(39,92,116,48,51,90)(42,111,112,53,109,113)(57,64,72,102,103,118)(59,105,78,89,115,119)(65,104,127,84,66,82)(80,122,128,108,123,99), (1,2,7,33,77,41,39,73,32,99,52,30,6,27,89,125,62,116,112,96,93,44,49,22,31,97,75,19,4,17,56,79,28,54,65,15,63,109,40,26,20,76,94,101,98,127,108,88,124,119,85,61,14,36,24,5)(3,13,57,67,18,72,68,16)(8,12,11,51,38,107,84,25,46,21,9,43,29,87,91,106,90,117,50,105,37,104,113,110,128,123,59,122,70,35,71,66,114,115,48,10,47,74,55,34,78,95,126,120,82,100,86,69,83,92,80,45,111,53,60,42)(23,58,103,118,64,102,121,81), (1,3,14,20,4,18,31,6)(2,8,39,110,125,104,86,97,83,56,43,26,87,91,27,90,49,10,19,74,84,109,38,108,122,61,123,71,17,70,65,45,101,92,50,36,37,7,34,30,95,126,76,82,85,25,5,21,48,99,114,112,42,22,53,11)(9,44,81,40,66,15,64,113,54,29,57,120,88,115,102,127,128,94,103,33,100,59,13,47,24,69,16,12,55,119,118,52,51,73,23,80,41,78,68,106,96,107,58,116,111,89,121,79,117,60,72,46,75,105,67,35)(28,32,62,124,77,63,98,93) );
 
Copy content sage:G = PermutationGroup(['(2,10)(3,15)(5,23)(6,29)(7,36)(8,41)(9,46)(11,52)(12,50)(13,22)(14,60)(17,25)(18,73)(19,64)(20,78)(21,65)(24,82)(26,68)(27,92)(28,94)(30,57)(31,59)(32,69)(33,102)(34,95)(35,86)(37,51)(38,100)(39,74)(40,71)(43,87)(44,62)(45,49)(47,55)(48,106)(54,70)(56,97)(58,79)(61,72)(63,105)(66,83)(75,90)(76,104)(77,89)(81,88)(84,120)(85,110)(91,116)(93,107)(96,118)(98,119)(101,103)(114,117)(115,124)(121,125)(126,127)', '(1,4)(2,9,45,114,56,12)(5,22,79,125,88,26)(6,28,93,62,14,32)(7,35,17,55,110,38)(8,40,95,54,11,43)(10,46,49,117,97,50)(13,58,121,81,68,23)(16,67)(19,61,33,101,96,30)(20,77,124,98,31,63)(21,76,126,120,83,24)(25,47,85,100,36,86)(27,91,106,37,75,74)(29,94,107,44,60,69)(34,70,52,87,41,71)(39,92,116,48,51,90)(42,111,112,53,109,113)(57,64,72,102,103,118)(59,105,78,89,115,119)(65,104,127,84,66,82)(80,122,128,108,123,99)', '(1,2,7,33,77,41,39,73,32,99,52,30,6,27,89,125,62,116,112,96,93,44,49,22,31,97,75,19,4,17,56,79,28,54,65,15,63,109,40,26,20,76,94,101,98,127,108,88,124,119,85,61,14,36,24,5)(3,13,57,67,18,72,68,16)(8,12,11,51,38,107,84,25,46,21,9,43,29,87,91,106,90,117,50,105,37,104,113,110,128,123,59,122,70,35,71,66,114,115,48,10,47,74,55,34,78,95,126,120,82,100,86,69,83,92,80,45,111,53,60,42)(23,58,103,118,64,102,121,81)', '(1,3,14,20,4,18,31,6)(2,8,39,110,125,104,86,97,83,56,43,26,87,91,27,90,49,10,19,74,84,109,38,108,122,61,123,71,17,70,65,45,101,92,50,36,37,7,34,30,95,126,76,82,85,25,5,21,48,99,114,112,42,22,53,11)(9,44,81,40,66,15,64,113,54,29,57,120,88,115,102,127,128,94,103,33,100,59,13,47,24,69,16,12,55,119,118,52,51,73,23,80,41,78,68,106,96,107,58,116,111,89,121,79,117,60,72,46,75,105,67,35)(28,32,62,124,77,63,98,93)'])
 

Group information

Description:$\GOrthPlus(4,7)$
Order: \(225792\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 7^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^2.\PSL(2,7)^2.D_4$, of order \(903168\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 7^{2} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 3, $\PSL(2,7)$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 8 12 14 16 21 24 28 42 48 56
Elements 1 3123 3248 17724 53424 2400 46032 4704 34656 9408 5376 9408 4032 5376 18816 8064 225792
Conjugacy classes   1 7 2 5 9 3 13 1 7 2 1 2 1 1 4 2 61
Divisions 1 7 2 5 9 3 7 1 7 1 1 1 1 1 1 1 49
Autjugacy classes 1 4 2 4 5 2 7 1 3 2 1 2 1 1 2 2 40

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 12 14 16 18 24 32 36 49 64 72 84 96 112 128 144 168 192 384
Irr. complex chars.   4 3 2 2 4 0 4 12 4 8 3 3 9 2 1 0 0 0 0 61
Irr. rational chars. 4 1 2 2 4 1 4 4 4 8 5 1 1 2 1 1 1 2 1 49

Minimal presentations

Permutation degree:$128$
Transitive degree:$128$
Rank: $2$
Inequivalent generating pairs: $20565$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 32 32 32
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\GOPlus(4,7)$
Permutation group:Degree $128$ $\langle(2,10)(3,15)(5,23)(6,29)(7,36)(8,41)(9,46)(11,52)(12,50)(13,22)(14,60)(17,25) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 128 | (2,10)(3,15)(5,23)(6,29)(7,36)(8,41)(9,46)(11,52)(12,50)(13,22)(14,60)(17,25)(18,73)(19,64)(20,78)(21,65)(24,82)(26,68)(27,92)(28,94)(30,57)(31,59)(32,69)(33,102)(34,95)(35,86)(37,51)(38,100)(39,74)(40,71)(43,87)(44,62)(45,49)(47,55)(48,106)(54,70)(56,97)(58,79)(61,72)(63,105)(66,83)(75,90)(76,104)(77,89)(81,88)(84,120)(85,110)(91,116)(93,107)(96,118)(98,119)(101,103)(114,117)(115,124)(121,125)(126,127), (1,4)(2,9,45,114,56,12)(5,22,79,125,88,26)(6,28,93,62,14,32)(7,35,17,55,110,38)(8,40,95,54,11,43)(10,46,49,117,97,50)(13,58,121,81,68,23)(16,67)(19,61,33,101,96,30)(20,77,124,98,31,63)(21,76,126,120,83,24)(25,47,85,100,36,86)(27,91,106,37,75,74)(29,94,107,44,60,69)(34,70,52,87,41,71)(39,92,116,48,51,90)(42,111,112,53,109,113)(57,64,72,102,103,118)(59,105,78,89,115,119)(65,104,127,84,66,82)(80,122,128,108,123,99), (1,2,7,33,77,41,39,73,32,99,52,30,6,27,89,125,62,116,112,96,93,44,49,22,31,97,75,19,4,17,56,79,28,54,65,15,63,109,40,26,20,76,94,101,98,127,108,88,124,119,85,61,14,36,24,5)(3,13,57,67,18,72,68,16)(8,12,11,51,38,107,84,25,46,21,9,43,29,87,91,106,90,117,50,105,37,104,113,110,128,123,59,122,70,35,71,66,114,115,48,10,47,74,55,34,78,95,126,120,82,100,86,69,83,92,80,45,111,53,60,42)(23,58,103,118,64,102,121,81), (1,3,14,20,4,18,31,6)(2,8,39,110,125,104,86,97,83,56,43,26,87,91,27,90,49,10,19,74,84,109,38,108,122,61,123,71,17,70,65,45,101,92,50,36,37,7,34,30,95,126,76,82,85,25,5,21,48,99,114,112,42,22,53,11)(9,44,81,40,66,15,64,113,54,29,57,120,88,115,102,127,128,94,103,33,100,59,13,47,24,69,16,12,55,119,118,52,51,73,23,80,41,78,68,106,96,107,58,116,111,89,121,79,117,60,72,46,75,105,67,35)(28,32,62,124,77,63,98,93) >;
 
Copy content gap:G := Group( (2,10)(3,15)(5,23)(6,29)(7,36)(8,41)(9,46)(11,52)(12,50)(13,22)(14,60)(17,25)(18,73)(19,64)(20,78)(21,65)(24,82)(26,68)(27,92)(28,94)(30,57)(31,59)(32,69)(33,102)(34,95)(35,86)(37,51)(38,100)(39,74)(40,71)(43,87)(44,62)(45,49)(47,55)(48,106)(54,70)(56,97)(58,79)(61,72)(63,105)(66,83)(75,90)(76,104)(77,89)(81,88)(84,120)(85,110)(91,116)(93,107)(96,118)(98,119)(101,103)(114,117)(115,124)(121,125)(126,127), (1,4)(2,9,45,114,56,12)(5,22,79,125,88,26)(6,28,93,62,14,32)(7,35,17,55,110,38)(8,40,95,54,11,43)(10,46,49,117,97,50)(13,58,121,81,68,23)(16,67)(19,61,33,101,96,30)(20,77,124,98,31,63)(21,76,126,120,83,24)(25,47,85,100,36,86)(27,91,106,37,75,74)(29,94,107,44,60,69)(34,70,52,87,41,71)(39,92,116,48,51,90)(42,111,112,53,109,113)(57,64,72,102,103,118)(59,105,78,89,115,119)(65,104,127,84,66,82)(80,122,128,108,123,99), (1,2,7,33,77,41,39,73,32,99,52,30,6,27,89,125,62,116,112,96,93,44,49,22,31,97,75,19,4,17,56,79,28,54,65,15,63,109,40,26,20,76,94,101,98,127,108,88,124,119,85,61,14,36,24,5)(3,13,57,67,18,72,68,16)(8,12,11,51,38,107,84,25,46,21,9,43,29,87,91,106,90,117,50,105,37,104,113,110,128,123,59,122,70,35,71,66,114,115,48,10,47,74,55,34,78,95,126,120,82,100,86,69,83,92,80,45,111,53,60,42)(23,58,103,118,64,102,121,81), (1,3,14,20,4,18,31,6)(2,8,39,110,125,104,86,97,83,56,43,26,87,91,27,90,49,10,19,74,84,109,38,108,122,61,123,71,17,70,65,45,101,92,50,36,37,7,34,30,95,126,76,82,85,25,5,21,48,99,114,112,42,22,53,11)(9,44,81,40,66,15,64,113,54,29,57,120,88,115,102,127,128,94,103,33,100,59,13,47,24,69,16,12,55,119,118,52,51,73,23,80,41,78,68,106,96,107,58,116,111,89,121,79,117,60,72,46,75,105,67,35)(28,32,62,124,77,63,98,93) );
 
Copy content sage:G = PermutationGroup(['(2,10)(3,15)(5,23)(6,29)(7,36)(8,41)(9,46)(11,52)(12,50)(13,22)(14,60)(17,25)(18,73)(19,64)(20,78)(21,65)(24,82)(26,68)(27,92)(28,94)(30,57)(31,59)(32,69)(33,102)(34,95)(35,86)(37,51)(38,100)(39,74)(40,71)(43,87)(44,62)(45,49)(47,55)(48,106)(54,70)(56,97)(58,79)(61,72)(63,105)(66,83)(75,90)(76,104)(77,89)(81,88)(84,120)(85,110)(91,116)(93,107)(96,118)(98,119)(101,103)(114,117)(115,124)(121,125)(126,127)', '(1,4)(2,9,45,114,56,12)(5,22,79,125,88,26)(6,28,93,62,14,32)(7,35,17,55,110,38)(8,40,95,54,11,43)(10,46,49,117,97,50)(13,58,121,81,68,23)(16,67)(19,61,33,101,96,30)(20,77,124,98,31,63)(21,76,126,120,83,24)(25,47,85,100,36,86)(27,91,106,37,75,74)(29,94,107,44,60,69)(34,70,52,87,41,71)(39,92,116,48,51,90)(42,111,112,53,109,113)(57,64,72,102,103,118)(59,105,78,89,115,119)(65,104,127,84,66,82)(80,122,128,108,123,99)', '(1,2,7,33,77,41,39,73,32,99,52,30,6,27,89,125,62,116,112,96,93,44,49,22,31,97,75,19,4,17,56,79,28,54,65,15,63,109,40,26,20,76,94,101,98,127,108,88,124,119,85,61,14,36,24,5)(3,13,57,67,18,72,68,16)(8,12,11,51,38,107,84,25,46,21,9,43,29,87,91,106,90,117,50,105,37,104,113,110,128,123,59,122,70,35,71,66,114,115,48,10,47,74,55,34,78,95,126,120,82,100,86,69,83,92,80,45,111,53,60,42)(23,58,103,118,64,102,121,81)', '(1,3,14,20,4,18,31,6)(2,8,39,110,125,104,86,97,83,56,43,26,87,91,27,90,49,10,19,74,84,109,38,108,122,61,123,71,17,70,65,45,101,92,50,36,37,7,34,30,95,126,76,82,85,25,5,21,48,99,114,112,42,22,53,11)(9,44,81,40,66,15,64,113,54,29,57,120,88,115,102,127,128,94,103,33,100,59,13,47,24,69,16,12,55,119,118,52,51,73,23,80,41,78,68,106,96,107,58,116,111,89,121,79,117,60,72,46,75,105,67,35)(28,32,62,124,77,63,98,93)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $\SOPlus(4,7)$ $\,\rtimes\,$ $C_2$ $\OmegaPlus(4,7)$ $\,\rtimes\,$ $C_2^2$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_2$ . $\POPlus(4,7)$ more information
Aut. group: $\Aut(\SL(2,7)\wr C_2)$

Elements of the group are displayed as matrices in $\GOPlus(4,7)$.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 1250485 subgroups in 791 conjugacy classes, 7 normal (5 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $\POPlus(4,7)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $\OmegaPlus(4,7)$ $G/G' \simeq$ $C_2^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $\POPlus(4,7)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2$ $G/\operatorname{Fit} \simeq$ $\POPlus(4,7)$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2$ $G/R \simeq$ $\POPlus(4,7)$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2$ $G/\operatorname{soc} \simeq$ $\POPlus(4,7)$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $D_8\wr C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^2$

Subgroup diagram and profile

Series

Derived series $\GOrthPlus(4,7)$ $\rhd$ $\OmegaPlus(4,7)$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $\GOrthPlus(4,7)$ $\rhd$ $\SOPlus(4,7)$ $\rhd$ $\OmegaPlus(4,7)$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $\GOrthPlus(4,7)$ $\rhd$ $\OmegaPlus(4,7)$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $61 \times 61$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $49 \times 49$ rational character table.