Properties

Label 2239488.dh
Order \( 2^{10} \cdot 3^{7} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{15} \cdot 3^{7} \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \)
Perm deg. $30$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 30 | (1,3,5)(2,6,13)(4,10,8)(7,11,12)(9,16,17)(14,15,18)(19,20,23)(21,25,27)(22,26,29)(24,28,30), (1,4)(2,7,3,8,14,5,12,6,10,16,9,15)(11,13,17,18)(19,21)(20,23,24,27,29,22,25,28)(26,30), (1,2,5,11,10,16,17,14,7)(3,8,13,12,6,4,9,15,18)(19,20,22)(21,24,27)(23,26,29)(25,28,30) >;
 
Copy content gap:G := Group( (1,3,5)(2,6,13)(4,10,8)(7,11,12)(9,16,17)(14,15,18)(19,20,23)(21,25,27)(22,26,29)(24,28,30), (1,4)(2,7,3,8,14,5,12,6,10,16,9,15)(11,13,17,18)(19,21)(20,23,24,27,29,22,25,28)(26,30), (1,2,5,11,10,16,17,14,7)(3,8,13,12,6,4,9,15,18)(19,20,22)(21,24,27)(23,26,29)(25,28,30) );
 
Copy content sage:G = PermutationGroup(['(1,3,5)(2,6,13)(4,10,8)(7,11,12)(9,16,17)(14,15,18)(19,20,23)(21,25,27)(22,26,29)(24,28,30)', '(1,4)(2,7,3,8,14,5,12,6,10,16,9,15)(11,13,17,18)(19,21)(20,23,24,27,29,22,25,28)(26,30)', '(1,2,5,11,10,16,17,14,7)(3,8,13,12,6,4,9,15,18)(19,20,22)(21,24,27)(23,26,29)(25,28,30)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(3066912217327541455029456177600932849392819040494229532835775049574173462260558868866302687244135925331470393721275857815320693480294367039465562761375971721357875303186871521895737134530650047954609969943054558494639219796209940409125690125074377817428590503625804683020320168561197900367943640945999077641646309870954708026699407796531540979349302424065609243994788839562607079322916941868840694050470566853655585115765734572072851012230234938608125362868168230708702299113174790322529770449642527240126179620144682310755823421493780692418073898,2239488)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.6; f = G.8; g = G.10; h = G.13; i = G.15; j = G.17;
 

Group information

Description:$C_3^6.C_2^7:S_4$
Order: \(2239488\)\(\medspace = 2^{10} \cdot 3^{7} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2\times C_3^6.C_2^4.C_2^4.C_6.C_2^5$, of order \(71663616\)\(\medspace = 2^{15} \cdot 3^{7} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 10, $C_3$ x 7
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24
Elements 1 14719 42200 207360 259304 93312 331776 772416 331776 186624 2239488
Conjugacy classes   1 23 21 24 397 4 8 150 8 4 640
Divisions 1 23 17 24 307 2 5 124 5 2 510
Autjugacy classes 1 16 14 10 166 1 3 46 3 1 261

Minimal presentations

Permutation degree:$30$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid b^{3}=d^{6}=e^{6}=g^{12}=h^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 14210538, 551141, 13419632, 25880581, 10670868, 17293491, 5999048, 22690413, 190, 63454204, 80239341, 718, 168147005, 103509724, 358671, 17628716, 294, 91511958, 25926791, 5752, 7405665, 60272215, 87236136, 37160681, 22761562, 2117595, 1796108, 705541, 398, 304592408, 14809201, 28817898, 14298827, 2383221, 198432, 99187869, 145295966, 35936683, 26842380, 2662277, 3592534, 884451, 766148, 502, 410113450, 192591327, 538604, 403981, 67415, 554, 165005003, 191507068, 38100717, 352574, 58848, 463898460, 35372405, 2864223, 1861801, 652523, 108897, 658, 2878861, 88833054, 2467648, 68676, 11590, 237951734, 23812951, 39657648, 550933, 91967, 762, 203059983, 50800928, 33841201, 470150, 78504, 83148801]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.2, G.3, G.4, G.6, G.8, G.10, G.13, G.15, G.17]); AssignNames(~G, ["a", "b", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "g4", "h", "h2", "i", "i2", "j"]);
 
Copy content gap:G := PcGroupCode(3066912217327541455029456177600932849392819040494229532835775049574173462260558868866302687244135925331470393721275857815320693480294367039465562761375971721357875303186871521895737134530650047954609969943054558494639219796209940409125690125074377817428590503625804683020320168561197900367943640945999077641646309870954708026699407796531540979349302424065609243994788839562607079322916941868840694050470566853655585115765734572072851012230234938608125362868168230708702299113174790322529770449642527240126179620144682310755823421493780692418073898,2239488); a := G.1; b := G.2; c := G.3; d := G.4; e := G.6; f := G.8; g := G.10; h := G.13; i := G.15; j := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(3066912217327541455029456177600932849392819040494229532835775049574173462260558868866302687244135925331470393721275857815320693480294367039465562761375971721357875303186871521895737134530650047954609969943054558494639219796209940409125690125074377817428590503625804683020320168561197900367943640945999077641646309870954708026699407796531540979349302424065609243994788839562607079322916941868840694050470566853655585115765734572072851012230234938608125362868168230708702299113174790322529770449642527240126179620144682310755823421493780692418073898,2239488)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.6; f = G.8; g = G.10; h = G.13; i = G.15; j = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(3066912217327541455029456177600932849392819040494229532835775049574173462260558868866302687244135925331470393721275857815320693480294367039465562761375971721357875303186871521895737134530650047954609969943054558494639219796209940409125690125074377817428590503625804683020320168561197900367943640945999077641646309870954708026699407796531540979349302424065609243994788839562607079322916941868840694050470566853655585115765734572072851012230234938608125362868168230708702299113174790322529770449642527240126179620144682310755823421493780692418073898,2239488)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.6; f = G.8; g = G.10; h = G.13; i = G.15; j = G.17;
 
Permutation group:Degree $30$ $\langle(1,3,5)(2,6,13)(4,10,8)(7,11,12)(9,16,17)(14,15,18)(19,20,23)(21,25,27) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 30 | (1,3,5)(2,6,13)(4,10,8)(7,11,12)(9,16,17)(14,15,18)(19,20,23)(21,25,27)(22,26,29)(24,28,30), (1,4)(2,7,3,8,14,5,12,6,10,16,9,15)(11,13,17,18)(19,21)(20,23,24,27,29,22,25,28)(26,30), (1,2,5,11,10,16,17,14,7)(3,8,13,12,6,4,9,15,18)(19,20,22)(21,24,27)(23,26,29)(25,28,30) >;
 
Copy content gap:G := Group( (1,3,5)(2,6,13)(4,10,8)(7,11,12)(9,16,17)(14,15,18)(19,20,23)(21,25,27)(22,26,29)(24,28,30), (1,4)(2,7,3,8,14,5,12,6,10,16,9,15)(11,13,17,18)(19,21)(20,23,24,27,29,22,25,28)(26,30), (1,2,5,11,10,16,17,14,7)(3,8,13,12,6,4,9,15,18)(19,20,22)(21,24,27)(23,26,29)(25,28,30) );
 
Copy content sage:G = PermutationGroup(['(1,3,5)(2,6,13)(4,10,8)(7,11,12)(9,16,17)(14,15,18)(19,20,23)(21,25,27)(22,26,29)(24,28,30)', '(1,4)(2,7,3,8,14,5,12,6,10,16,9,15)(11,13,17,18)(19,21)(20,23,24,27,29,22,25,28)(26,30)', '(1,2,5,11,10,16,17,14,7)(3,8,13,12,6,4,9,15,18)(19,20,22)(21,24,27)(23,26,29)(25,28,30)'])
 
Transitive group: 36T43744 36T43745 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^6$ . $(C_2^7:S_4)$ $C_2^5$ . $(C_3^5:D_6:S_4)$ $C_2$ . $(C_3^6.C_2^6.S_4)$ $(C_3^6.C_2^7:A_4)$ . $C_2$ all 15

Elements of the group are displayed as permutations of degree 30.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{7}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 31 normal subgroups (19 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_3^6.C_2^6.S_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^6.C_2^7:A_4$ $G/G' \simeq$ $C_2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^3$ $G/\Phi \simeq$ $C_3^6.C_2^4:S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3\times C_6^5$ $G/\operatorname{Fit} \simeq$ $C_2^2:S_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^6.C_2^7:S_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^3\times C_6^3$ $G/\operatorname{soc} \simeq$ $C_2^4:S_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^4.C_2^4.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2\wr C_3$

Subgroup diagram and profile

Series

Derived series $C_3^6.C_2^7:S_4$ $\rhd$ $C_3^6.C_2^7:A_4$ $\rhd$ $(C_3\times C_6^5).C_2^4$ $\rhd$ $C_3^3\times C_6^3$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^6.C_2^7:S_4$ $\rhd$ $C_3^6.C_2^7:A_4$ $\rhd$ $(C_3\times C_6^5).C_2^4$ $\rhd$ $(C_3\times C_6^5).C_2^2$ $\rhd$ $C_3\times C_6^5$ $\rhd$ $C_3^3\times C_6^3$ $\rhd$ $C_3^4\times C_6^2$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^6.C_2^7:S_4$ $\rhd$ $C_3^6.C_2^7:A_4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $640 \times 640$ character table is not available for this group.

Rational character table

The $510 \times 510$ rational character table is not available for this group.