Group information
| Description: | $C_3^6.C_2^8:A_4$ | |
| Order: | \(2239488\)\(\medspace = 2^{10} \cdot 3^{7} \) |
|
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
|
| Automorphism group: | Group of order \(1146617856\)\(\medspace = 2^{19} \cdot 3^{7} \) |
|
| Composition factors: | $C_2$ x 10, $C_3$ x 7 |
|
| Derived length: | $3$ |
|
This group is nonabelian and solvable. Whether it is monomial has not been computed.
Group statistics
| Order | 1 | 2 | 3 | 4 | 6 | 9 | 12 | 18 | ||
|---|---|---|---|---|---|---|---|---|---|---|
| Elements | 1 | 24255 | 42200 | 25920 | 426024 | 331776 | 393984 | 995328 | 2239488 | |
| Conjugacy classes | 1 | 51 | 34 | 36 | 1402 | 16 | 396 | 48 | 1984 | |
| Divisions | 1 | 51 | 25 | 36 | 1039 | 8 | 348 | 24 | 1532 | |
| Autjugacy classes | 1 | 17 | 13 | 8 | 164 | 2 | 62 | 4 | 271 |
Minimal presentations
| Permutation degree: | $30$ |
| Transitive degree: | $36$ |
| Rank: | $4$ |
| Inequivalent generating quadruples: | not computed |
Minimal degrees of faithful linear representations
| Over $\mathbb{C}$ | Over $\mathbb{R}$ | Over $\mathbb{Q}$ | |
|---|---|---|---|
| Irreducible | 12 | not computed | not computed |
| Arbitrary | not computed | not computed | not computed |
Constructions
| Presentation: |
${\langle a, b, c, d, e, f, g, h, i \mid e^{12}=f^{6}=g^{6}=h^{6}=i^{2}=[b,i]= \!\cdots\! \rangle}$
| |||||||
|
| ||||||||
| Permutation group: | Degree $30$
$\langle(1,3,7,2,6,9,5,4,10)(8,14,18,12,13,16,11,15,17)(19,21,25)(20,22,29)(23,26,24) \!\cdots\! \rangle$
| |||||||
|
| ||||||||
| Transitive group: | 36T43683 | more information | ||||||
| Direct product: | not computed | |||||||
| Semidirect product: | not computed | |||||||
| Trans. wreath product: | not isomorphic to a non-trivial transitive wreath product | |||||||
| Possibly split product: | $C_3^6$ . $(C_2^8:A_4)$ | $(C_3^6.C_2^7:A_4)$ . $C_2$ | $(C_3^5:D_6)$ . $(C_2\wr A_4)$ (4) | $(C_3^6.C_2^5)$ . $(Q_8:A_4)$ (2) | all 40 | |||
Elements of the group are displayed as permutations of degree 30.
Homology
| Abelianization: | $C_{6} \simeq C_{2} \times C_{3}$ |
|
| Schur multiplier: | $C_{2}^{9}$ |
|
| Commutator length: | $2$ |
|
Subgroups
There are 153 normal subgroups (29 characteristic).
Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.
Special subgroups
| Center: | a subgroup isomorphic to $C_2$ |
|
| Commutator: | not computed |
|
| Frattini: | a subgroup isomorphic to $C_2^3$ |
|
| Fitting: | not computed |
|
| Radical: | not computed |
|
| Socle: | not computed |
|
Subgroup diagram and profile
Series
| Derived series | not computed |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Chief series | not computed |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lower central series | not computed |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Upper central series | not computed |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supergroups
This group is a maximal subgroup of 8 larger groups in the database.
This group is a maximal quotient of 2 larger groups in the database.
Character theory
Complex character table
The $1984 \times 1984$ character table is not available for this group.
Rational character table
The $1532 \times 1532$ rational character table is not available for this group.