Properties

Label 2239488.bp
Order \( 2^{10} \cdot 3^{7} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 3 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{19} \cdot 3^{7} \)
$\card{\mathrm{Out}(G)}$ \( 2^{10} \)
Perm deg. $30$
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 30 | (1,3,7,2,6,9,5,4,10)(8,14,18,12,13,16,11,15,17)(19,21,25)(20,22,29)(23,26,24)(27,30,28), (1,2,5)(3,4)(8,12)(9,10)(13,15,14)(17,18)(19,20,24,30)(21,23)(22,28)(25,29,26,27), (1,3,8)(2,6,12)(4,11,5)(7,13,17,10,14,16,9,15,18)(19,22,29,30,21,26)(20,23,25,24,28,27), (1,4,7)(2,6,10)(3,9,5)(8,13,18,11,15,17,12,14,16)(19,23,29,30,28,26)(20,22,25,24,21,27) >;
 
Copy content gap:G := Group( (1,3,7,2,6,9,5,4,10)(8,14,18,12,13,16,11,15,17)(19,21,25)(20,22,29)(23,26,24)(27,30,28), (1,2,5)(3,4)(8,12)(9,10)(13,15,14)(17,18)(19,20,24,30)(21,23)(22,28)(25,29,26,27), (1,3,8)(2,6,12)(4,11,5)(7,13,17,10,14,16,9,15,18)(19,22,29,30,21,26)(20,23,25,24,28,27), (1,4,7)(2,6,10)(3,9,5)(8,13,18,11,15,17,12,14,16)(19,23,29,30,28,26)(20,22,25,24,21,27) );
 
Copy content sage:G = PermutationGroup(['(1,3,7,2,6,9,5,4,10)(8,14,18,12,13,16,11,15,17)(19,21,25)(20,22,29)(23,26,24)(27,30,28)', '(1,2,5)(3,4)(8,12)(9,10)(13,15,14)(17,18)(19,20,24,30)(21,23)(22,28)(25,29,26,27)', '(1,3,8)(2,6,12)(4,11,5)(7,13,17,10,14,16,9,15,18)(19,22,29,30,21,26)(20,23,25,24,28,27)', '(1,4,7)(2,6,10)(3,9,5)(8,13,18,11,15,17,12,14,16)(19,23,29,30,28,26)(20,22,25,24,21,27)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(34446695388101673378962299130714190313231407541853480190196550939876244096736963074500433563642034779719908023837678844848572549553741831972289649495451943058265362912414566597834918476074821039421251104788287232242219560485574730898371404288019045067506572585636723513158487627816196510215138185504664276235481310484318145338712829516366273543324390123627369867489166637385627833256382457611759414248623393226566718144810521587901618589946631711118731676915326153704710371660400580144357333831145097968622562995606563887261486761533891156948138812715598139394790570,2239488)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.11; g = G.13; h = G.15; i = G.17;
 

Group information

Description:$C_3^6.C_2^8:A_4$
Order: \(2239488\)\(\medspace = 2^{10} \cdot 3^{7} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(1146617856\)\(\medspace = 2^{19} \cdot 3^{7} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 10, $C_3$ x 7
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 24255 42200 25920 426024 331776 393984 995328 2239488
Conjugacy classes   1 51 34 36 1402 16 396 48 1984
Divisions 1 51 25 36 1039 8 348 24 1532
Autjugacy classes 1 17 13 8 164 2 62 4 271

Minimal presentations

Permutation degree:$30$
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid e^{12}=f^{6}=g^{6}=h^{6}=i^{2}=[b,i]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 34, 2514522, 60452750, 14889826, 4244868, 142518891, 41349392, 718797, 190, 26744404, 45128901, 15900478, 3975012, 61319957, 12068662, 9905871, 3902780, 44443, 294, 201625038, 832547, 22282552, 11107041, 925452, 291736327, 116059704, 7588841, 12949978, 61275, 3765932, 398, 174500792, 42984457, 55139, 450, 192563769, 95484266, 49020, 301526290, 196810047, 16318412, 19469005, 4429751, 442197, 554, 88833035, 82487836, 705069, 58848, 9922, 10072308, 97834961, 37806958, 23486175, 4869169, 811643, 78416, 658, 123379213, 106106142, 29611055, 2467648, 2467682, 411396, 5895, 212168174, 255130591, 26438448, 19828865, 2203299, 367333, 46084, 762, 138184719, 62042144, 5640241, 16920642, 470116, 78470, 39353, 161803024, 374577]); a,b,c,d,e,f,g,h,i := Explode([G.1, G.3, G.4, G.6, G.8, G.11, G.13, G.15, G.17]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "d2", "e", "e2", "e4", "f", "f2", "g", "g2", "h", "h2", "i"]);
 
Copy content gap:G := PcGroupCode(34446695388101673378962299130714190313231407541853480190196550939876244096736963074500433563642034779719908023837678844848572549553741831972289649495451943058265362912414566597834918476074821039421251104788287232242219560485574730898371404288019045067506572585636723513158487627816196510215138185504664276235481310484318145338712829516366273543324390123627369867489166637385627833256382457611759414248623393226566718144810521587901618589946631711118731676915326153704710371660400580144357333831145097968622562995606563887261486761533891156948138812715598139394790570,2239488); a := G.1; b := G.3; c := G.4; d := G.6; e := G.8; f := G.11; g := G.13; h := G.15; i := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(34446695388101673378962299130714190313231407541853480190196550939876244096736963074500433563642034779719908023837678844848572549553741831972289649495451943058265362912414566597834918476074821039421251104788287232242219560485574730898371404288019045067506572585636723513158487627816196510215138185504664276235481310484318145338712829516366273543324390123627369867489166637385627833256382457611759414248623393226566718144810521587901618589946631711118731676915326153704710371660400580144357333831145097968622562995606563887261486761533891156948138812715598139394790570,2239488)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.11; g = G.13; h = G.15; i = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(34446695388101673378962299130714190313231407541853480190196550939876244096736963074500433563642034779719908023837678844848572549553741831972289649495451943058265362912414566597834918476074821039421251104788287232242219560485574730898371404288019045067506572585636723513158487627816196510215138185504664276235481310484318145338712829516366273543324390123627369867489166637385627833256382457611759414248623393226566718144810521587901618589946631711118731676915326153704710371660400580144357333831145097968622562995606563887261486761533891156948138812715598139394790570,2239488)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.11; g = G.13; h = G.15; i = G.17;
 
Permutation group:Degree $30$ $\langle(1,3,7,2,6,9,5,4,10)(8,14,18,12,13,16,11,15,17)(19,21,25)(20,22,29)(23,26,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 30 | (1,3,7,2,6,9,5,4,10)(8,14,18,12,13,16,11,15,17)(19,21,25)(20,22,29)(23,26,24)(27,30,28), (1,2,5)(3,4)(8,12)(9,10)(13,15,14)(17,18)(19,20,24,30)(21,23)(22,28)(25,29,26,27), (1,3,8)(2,6,12)(4,11,5)(7,13,17,10,14,16,9,15,18)(19,22,29,30,21,26)(20,23,25,24,28,27), (1,4,7)(2,6,10)(3,9,5)(8,13,18,11,15,17,12,14,16)(19,23,29,30,28,26)(20,22,25,24,21,27) >;
 
Copy content gap:G := Group( (1,3,7,2,6,9,5,4,10)(8,14,18,12,13,16,11,15,17)(19,21,25)(20,22,29)(23,26,24)(27,30,28), (1,2,5)(3,4)(8,12)(9,10)(13,15,14)(17,18)(19,20,24,30)(21,23)(22,28)(25,29,26,27), (1,3,8)(2,6,12)(4,11,5)(7,13,17,10,14,16,9,15,18)(19,22,29,30,21,26)(20,23,25,24,28,27), (1,4,7)(2,6,10)(3,9,5)(8,13,18,11,15,17,12,14,16)(19,23,29,30,28,26)(20,22,25,24,21,27) );
 
Copy content sage:G = PermutationGroup(['(1,3,7,2,6,9,5,4,10)(8,14,18,12,13,16,11,15,17)(19,21,25)(20,22,29)(23,26,24)(27,30,28)', '(1,2,5)(3,4)(8,12)(9,10)(13,15,14)(17,18)(19,20,24,30)(21,23)(22,28)(25,29,26,27)', '(1,3,8)(2,6,12)(4,11,5)(7,13,17,10,14,16,9,15,18)(19,22,29,30,21,26)(20,23,25,24,28,27)', '(1,4,7)(2,6,10)(3,9,5)(8,13,18,11,15,17,12,14,16)(19,23,29,30,28,26)(20,22,25,24,21,27)'])
 
Transitive group: 36T43683 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^6$ . $(C_2^8:A_4)$ $(C_3^6.C_2^7:A_4)$ . $C_2$ $(C_3^5:D_6)$ . $(C_2\wr A_4)$ (4) $(C_3^6.C_2^5)$ . $(Q_8:A_4)$ (2) all 40

Elements of the group are displayed as permutations of degree 30.

Homology

Abelianization: $C_{6} \simeq C_{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{9}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 153 normal subgroups (29 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^3$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 8 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1984 \times 1984$ character table is not available for this group.

Rational character table

The $1532 \times 1532$ rational character table is not available for this group.