Properties

Label 2187.9303
Order \( 3^{7} \)
Exponent \( 3^{2} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 3^{6} \)
$\card{Z(G)}$ \( 3^{5} \)
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{21} \cdot 5 \cdot 13 \)
$\card{\mathrm{Out}(G)}$ \( 2^{10} \cdot 3^{19} \cdot 5 \cdot 13 \)
Trans deg. not computed
Rank $6$

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_3^5 . C_3^2$
Order: \(2187\)\(\medspace = 3^{7} \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Automorphism group:Group of order 696241109191680
Nilpotency class:$2$
Derived length:$2$

This group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian. Whether it is metacyclic, monomial, or rational has not been computed.

Group statistics

Order 1 3 9
Elements 1 728 1458 2187
Conjugacy classes   1 404 486 891
Divisions data not computed
Autjugacy classes data not computed

Dimension 1 3
Irr. complex chars.   729 162 891

Constructions

Presentation: ${\langle a, b, c, d, e, f, g \mid b^{3}=c^{3}=d^{3}=e^{3}=f^{3}=g^{3}=[a,c]= \!\cdots\! \rangle}$ Copy content Toggle raw display

Homology

Abelianization: $C_{3}^{6} $

Subgroups

Center: $Z \simeq$ $C_3^5$ $G/Z \simeq$ $C_3^2$
Commutator: $G' \simeq$ $C_3$ $G/G' \simeq$ $C_3^6$
Frattini: $\Phi \simeq$ $C_3$ $G/\Phi \simeq$ $C_3^6$
Fitting: $\operatorname{Fit} \simeq$ $C_3^5 . C_3^2$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_3^5 . C_3^2$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_3^5$ $G/S \simeq$ $C_3^2$
Maximal subgroups: $M_{3,1} \simeq$ $C_3^4\times C_9$ $G/M_{3,1} \simeq$ $C_3$ 3 normal subgroups
$M_{3,2} \simeq$ $C_9:C_3^4$ $G/M_{3,2} \simeq$ $C_3$ 360 normal subgroups
$M_{3,3} \simeq$ $C_3^6$ $G/M_{3,3} \simeq$ $C_3$
Maximal quotients: $m_{3,1} \simeq$ $C_3$ $G/m_{3,1} \simeq$ $C_9:C_3^4$ 120 normal subgroups
$m_{3,2} \simeq$ $C_3$ $G/m_{3,2} \simeq$ $C_3^6$