Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid d^{8}=f^{8}=g^{24}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([23, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3802227704, 3947910165, 116, 10650509630, 186, 9060655331, 1504891912, 21357996884, 2419404067, 2093876350, 2784788783, 1236977816, 29236335557, 10725552124, 1520606595, 2948899442, 872774749, 396, 1191008454, 5421650557, 6164638532, 1136244051, 937119918, 466, 23728380935, 4496559646, 134252341, 2958134220, 293200419, 30086790920, 17209244767, 10302267510, 5433170477, 2102197708, 122529219, 380281502, 233221687, 119962488, 17698268169, 13098032672, 1645077815, 6132955598, 462598181, 253894364, 513553347, 25849410, 181383253, 676, 19263298570, 20313446945, 12526843704, 4958670543, 62711718, 257007645, 483821156, 282455443, 40580382, 746, 14516133899, 27145752610, 7049914425, 6712955984, 2427210343, 99784062, 555506453, 373280236, 13356387, 7246573580, 31471907619, 12192846906, 2025813585, 831813320, 1174529535, 142391126, 469005, 8912788, 115297011, 36283294, 21911583, 886, 23078322189, 8139170852, 10355437627, 264112210, 268913897, 1271513728, 153859479, 132818734, 67542917, 109227772, 61734083, 53074, 956, 41483550734, 18402001957, 16009236540, 3389368403, 1617006826, 827558529, 618392, 142592815, 10399878, 48852221, 66709444, 16209747, 1026, 72761737231, 31690063910, 8052146237, 9093709908, 700907627, 753794, 279939271, 72422622, 36223221, 12044, 74913447952, 19711705127, 7456751678, 2584879189, 800876, 647421059, 322509466, 600753, 116511944, 40388959, 11598870, 37805, 2918716, 1450143, 5030, 203489297, 11659935784, 7946256447, 6506569814, 4696363117, 681689220, 2543771, 169150642, 124001481, 62000864, 38750647, 119502, 15142757, 4844116, 15243, 15722938386, 10975985705, 6096576576, 7383552087, 4627026030, 574127237, 1457692316, 421533875, 182183754, 81387105, 64760152, 377839, 5391126, 9067193, 2585632, 28156887059, 9157017642, 21863792705, 7498956888, 657571951, 977408134, 1191731357, 449725620, 161802443, 165364706, 27114489, 1192592, 8843335, 10880238, 91421, 42147151892, 40358707243, 6204162114, 605380697, 577683568, 2087672967, 958272158, 84328117, 25780812, 100773347, 69366778, 3756081, 15800192, 510367, 4663224, 100262936597, 26960068652, 10151477315, 12495560794, 1850810481, 460112008, 189640863, 20207798, 301624781, 53369060, 14152059, 11804242, 17754825, 8895800, 5367991, 91854307350, 10417897517, 21082808388, 6645526619, 2889406578, 2871530633, 844233376, 296985015, 242883150, 74821989, 89617084, 37021811, 3669442, 3136233, 939848]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.2, G.5, G.6, G.9, G.10, G.13, G.17, G.18, G.19, G.20, G.21, G.22, G.23]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "d4", "e", "f", "f2", "f4", "g", "g2", "g4", "g8", "h", "i", "j", "k", "l", "m", "n"]);
gap:G := PcGroupCode(1476863671028297846821754971870636697560676922297518579205119107735848919750846082834732222043282948908171329595355781427648477823669677371432393027989973804411262725360772895442859619954391010355008656887109337608474119878221577638617972997453179322370248326927117479102289270377332597558218250847199419078472528795827157881941369971318011823738185247133554772958981744868034438314780093821436126532910529387948277961874890578783387432219036719396796625568261686515980496709446629343248769888100448992723162552609529483811584105557818125339515973346748289175119668167637512162324325409773588140059501681692459006197375818387361855517338809190776915057986818884001043895609963384680082617250576541709459188322330920719326481328355489294420762110367757856498267627153714712173274964047177214247788980227462764062728955819714172898351681046698615927893156669671974407330550819018427350653299700721283115116928699081645859127218059295124290625170615211174093261807588354403977751829603305402357396439684039487908437472348780813571027926848825059285225510329161443711085646407194708872828416300363760430302886106617260396106610682695502077237048968671968242228303225152111166978495771119514245648642634958636185396913751165150469714884560793146101179799000003566674337909839576951013454312371805789467183407762882978460137759024325590596086998050709999599220601626036494935768615065814654748834674618242315522210273554610125617333531424386912666744032332465302086272856167263190829232640151447862064768656350401259857557999801155456123946406628624220390839196501790535430309132656992727914543011008992881417316656629901485651017891385338032961883610473717307806009677125956052171073352429103545458479166086353289063733030005455645510861861778301647653076287459399309332676940766595091804255038959322613403029915229807785001841105318857754516246250161672460163345217742281560158259257594371610037022579491224905915644741402994147583,214990848); a := G.1; b := G.2; c := G.5; d := G.6; e := G.9; f := G.10; g := G.13; h := G.17; i := G.18; j := G.19; k := G.20; l := G.21; m := G.22; n := G.23;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(1476863671028297846821754971870636697560676922297518579205119107735848919750846082834732222043282948908171329595355781427648477823669677371432393027989973804411262725360772895442859619954391010355008656887109337608474119878221577638617972997453179322370248326927117479102289270377332597558218250847199419078472528795827157881941369971318011823738185247133554772958981744868034438314780093821436126532910529387948277961874890578783387432219036719396796625568261686515980496709446629343248769888100448992723162552609529483811584105557818125339515973346748289175119668167637512162324325409773588140059501681692459006197375818387361855517338809190776915057986818884001043895609963384680082617250576541709459188322330920719326481328355489294420762110367757856498267627153714712173274964047177214247788980227462764062728955819714172898351681046698615927893156669671974407330550819018427350653299700721283115116928699081645859127218059295124290625170615211174093261807588354403977751829603305402357396439684039487908437472348780813571027926848825059285225510329161443711085646407194708872828416300363760430302886106617260396106610682695502077237048968671968242228303225152111166978495771119514245648642634958636185396913751165150469714884560793146101179799000003566674337909839576951013454312371805789467183407762882978460137759024325590596086998050709999599220601626036494935768615065814654748834674618242315522210273554610125617333531424386912666744032332465302086272856167263190829232640151447862064768656350401259857557999801155456123946406628624220390839196501790535430309132656992727914543011008992881417316656629901485651017891385338032961883610473717307806009677125956052171073352429103545458479166086353289063733030005455645510861861778301647653076287459399309332676940766595091804255038959322613403029915229807785001841105318857754516246250161672460163345217742281560158259257594371610037022579491224905915644741402994147583,214990848)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.10; g = G.13; h = G.17; i = G.18; j = G.19; k = G.20; l = G.21; m = G.22; n = G.23;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(1476863671028297846821754971870636697560676922297518579205119107735848919750846082834732222043282948908171329595355781427648477823669677371432393027989973804411262725360772895442859619954391010355008656887109337608474119878221577638617972997453179322370248326927117479102289270377332597558218250847199419078472528795827157881941369971318011823738185247133554772958981744868034438314780093821436126532910529387948277961874890578783387432219036719396796625568261686515980496709446629343248769888100448992723162552609529483811584105557818125339515973346748289175119668167637512162324325409773588140059501681692459006197375818387361855517338809190776915057986818884001043895609963384680082617250576541709459188322330920719326481328355489294420762110367757856498267627153714712173274964047177214247788980227462764062728955819714172898351681046698615927893156669671974407330550819018427350653299700721283115116928699081645859127218059295124290625170615211174093261807588354403977751829603305402357396439684039487908437472348780813571027926848825059285225510329161443711085646407194708872828416300363760430302886106617260396106610682695502077237048968671968242228303225152111166978495771119514245648642634958636185396913751165150469714884560793146101179799000003566674337909839576951013454312371805789467183407762882978460137759024325590596086998050709999599220601626036494935768615065814654748834674618242315522210273554610125617333531424386912666744032332465302086272856167263190829232640151447862064768656350401259857557999801155456123946406628624220390839196501790535430309132656992727914543011008992881417316656629901485651017891385338032961883610473717307806009677125956052171073352429103545458479166086353289063733030005455645510861861778301647653076287459399309332676940766595091804255038959322613403029915229807785001841105318857754516246250161672460163345217742281560158259257594371610037022579491224905915644741402994147583,214990848)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.10; g = G.13; h = G.17; i = G.18; j = G.19; k = G.20; l = G.21; m = G.22; n = G.23;
|
Permutation group: | Degree $36$
$\langle(1,9,8,3)(2,5,7,4)(10,30,15,33,12,31,11,35,16,28,14,34,17,36,18,32)(13,29) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,9,8,3)(2,5,7,4)(10,30,15,33,12,31,11,35,16,28,14,34,17,36,18,32)(13,29)(19,23,22,21)(20,27,24,26), (1,4,8,5)(2,9,7,3)(10,12,14,13,18,17)(11,16,15)(19,20,23,24,27,25)(21,26,22)(28,29,33,32)(30,34,31,36), (1,32,24,15,9,29,26,16,6,28,20,18,8,36,25,12,7,31,27,14,2,34,22,10,5,35,19,11,3,30,23,17)(4,33,21,13), (1,9,4,8)(2,3,6,5)(11,15,12,17)(13,14,16,18)(19,20,24,21,25,27,23,26)(29,36,33,31,30,32,35,34) >;
gap:G := Group( (1,9,8,3)(2,5,7,4)(10,30,15,33,12,31,11,35,16,28,14,34,17,36,18,32)(13,29)(19,23,22,21)(20,27,24,26), (1,4,8,5)(2,9,7,3)(10,12,14,13,18,17)(11,16,15)(19,20,23,24,27,25)(21,26,22)(28,29,33,32)(30,34,31,36), (1,32,24,15,9,29,26,16,6,28,20,18,8,36,25,12,7,31,27,14,2,34,22,10,5,35,19,11,3,30,23,17)(4,33,21,13), (1,9,4,8)(2,3,6,5)(11,15,12,17)(13,14,16,18)(19,20,24,21,25,27,23,26)(29,36,33,31,30,32,35,34) );
sage:G = PermutationGroup(['(1,9,8,3)(2,5,7,4)(10,30,15,33,12,31,11,35,16,28,14,34,17,36,18,32)(13,29)(19,23,22,21)(20,27,24,26)', '(1,4,8,5)(2,9,7,3)(10,12,14,13,18,17)(11,16,15)(19,20,23,24,27,25)(21,26,22)(28,29,33,32)(30,34,31,36)', '(1,32,24,15,9,29,26,16,6,28,20,18,8,36,25,12,7,31,27,14,2,34,22,10,5,35,19,11,3,30,23,17)(4,33,21,13)', '(1,9,4,8)(2,3,6,5)(11,15,12,17)(13,14,16,18)(19,20,24,21,25,27,23,26)(29,36,33,31,30,32,35,34)'])
|
Transitive group: |
36T83506 |
|
|
|
more information |
Direct product: |
not isomorphic to a non-trivial direct product |
Semidirect product: |
not computed |
Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
Possibly split product: |
$(C_3^8:C_8.D_8^2)$ . $\SD_{16}$ (2) |
$(C_3^8:C_8.D_8^2.Q_8)$ . $C_2$ (2) |
$(C_3^8:C_8.D_8^2.C_8)$ . $C_2$ (2) |
$(C_3^8:C_8.C_8:D_8.D_8)$ . $C_2$ (2) |
all 99 |
Aut. group: |
$\Aut(C_3^8:(C_4\times C_8).Q_{16})$ |
$\Aut(C_3^8:C_8.D_4^2)$ |
$\Aut(C_3^8:C_8.C_8:D_8)$ |
$\Aut(C_3^8:C_8.C_8:Q_{16})$ |
all 16 |
Elements of the group are displayed as permutations of degree 36.
The $552 \times 552$ character table is not available for this group.
The $384 \times 384$ rational character table is not available for this group.