Properties

Label 214990848.ew
Order \( 2^{15} \cdot 3^{8} \)
Exponent \( 2^{5} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{17} \cdot 3^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. not computed
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,9,8,3)(2,5,7,4)(10,30,15,33,12,31,11,35,16,28,14,34,17,36,18,32)(13,29)(19,23,22,21)(20,27,24,26), (1,4,8,5)(2,9,7,3)(10,12,14,13,18,17)(11,16,15)(19,20,23,24,27,25)(21,26,22)(28,29,33,32)(30,34,31,36), (1,32,24,15,9,29,26,16,6,28,20,18,8,36,25,12,7,31,27,14,2,34,22,10,5,35,19,11,3,30,23,17)(4,33,21,13), (1,9,4,8)(2,3,6,5)(11,15,12,17)(13,14,16,18)(19,20,24,21,25,27,23,26)(29,36,33,31,30,32,35,34) >;
 
Copy content gap:G := Group( (1,9,8,3)(2,5,7,4)(10,30,15,33,12,31,11,35,16,28,14,34,17,36,18,32)(13,29)(19,23,22,21)(20,27,24,26), (1,4,8,5)(2,9,7,3)(10,12,14,13,18,17)(11,16,15)(19,20,23,24,27,25)(21,26,22)(28,29,33,32)(30,34,31,36), (1,32,24,15,9,29,26,16,6,28,20,18,8,36,25,12,7,31,27,14,2,34,22,10,5,35,19,11,3,30,23,17)(4,33,21,13), (1,9,4,8)(2,3,6,5)(11,15,12,17)(13,14,16,18)(19,20,24,21,25,27,23,26)(29,36,33,31,30,32,35,34) );
 
Copy content sage:G = PermutationGroup(['(1,9,8,3)(2,5,7,4)(10,30,15,33,12,31,11,35,16,28,14,34,17,36,18,32)(13,29)(19,23,22,21)(20,27,24,26)', '(1,4,8,5)(2,9,7,3)(10,12,14,13,18,17)(11,16,15)(19,20,23,24,27,25)(21,26,22)(28,29,33,32)(30,34,31,36)', '(1,32,24,15,9,29,26,16,6,28,20,18,8,36,25,12,7,31,27,14,2,34,22,10,5,35,19,11,3,30,23,17)(4,33,21,13)', '(1,9,4,8)(2,3,6,5)(11,15,12,17)(13,14,16,18)(19,20,24,21,25,27,23,26)(29,36,33,31,30,32,35,34)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1476863671028297846821754971870636697560676922297518579205119107735848919750846082834732222043282948908171329595355781427648477823669677371432393027989973804411262725360772895442859619954391010355008656887109337608474119878221577638617972997453179322370248326927117479102289270377332597558218250847199419078472528795827157881941369971318011823738185247133554772958981744868034438314780093821436126532910529387948277961874890578783387432219036719396796625568261686515980496709446629343248769888100448992723162552609529483811584105557818125339515973346748289175119668167637512162324325409773588140059501681692459006197375818387361855517338809190776915057986818884001043895609963384680082617250576541709459188322330920719326481328355489294420762110367757856498267627153714712173274964047177214247788980227462764062728955819714172898351681046698615927893156669671974407330550819018427350653299700721283115116928699081645859127218059295124290625170615211174093261807588354403977751829603305402357396439684039487908437472348780813571027926848825059285225510329161443711085646407194708872828416300363760430302886106617260396106610682695502077237048968671968242228303225152111166978495771119514245648642634958636185396913751165150469714884560793146101179799000003566674337909839576951013454312371805789467183407762882978460137759024325590596086998050709999599220601626036494935768615065814654748834674618242315522210273554610125617333531424386912666744032332465302086272856167263190829232640151447862064768656350401259857557999801155456123946406628624220390839196501790535430309132656992727914543011008992881417316656629901485651017891385338032961883610473717307806009677125956052171073352429103545458479166086353289063733030005455645510861861778301647653076287459399309332676940766595091804255038959322613403029915229807785001841105318857754516246250161672460163345217742281560158259257594371610037022579491224905915644741402994147583,214990848)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.10; g = G.13; h = G.17; i = G.18; j = G.19; k = G.20; l = G.21; m = G.22; n = G.23;
 

Group information

Description:$C_3^8:C_8.D_8^2.\SD_{16}$
Order: \(214990848\)\(\medspace = 2^{15} \cdot 3^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^8:C_8.D_8^2.\SD_{16}.C_2^2$, of order \(859963392\)\(\medspace = 2^{17} \cdot 3^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 15, $C_3$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16 24 32 48
Elements 1 61839 6560 7727472 4235616 39419136 19881216 58558464 22726656 53747712 8626176 214990848
Conjugacy classes   1 12 5 46 28 215 43 86 92 8 16 552
Divisions 1 12 5 46 28 134 43 50 54 4 7 384
Autjugacy classes 1 9 5 33 21 134 34 42 63 2 12 356

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 32 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid d^{8}=f^{8}=g^{24}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([23, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3802227704, 3947910165, 116, 10650509630, 186, 9060655331, 1504891912, 21357996884, 2419404067, 2093876350, 2784788783, 1236977816, 29236335557, 10725552124, 1520606595, 2948899442, 872774749, 396, 1191008454, 5421650557, 6164638532, 1136244051, 937119918, 466, 23728380935, 4496559646, 134252341, 2958134220, 293200419, 30086790920, 17209244767, 10302267510, 5433170477, 2102197708, 122529219, 380281502, 233221687, 119962488, 17698268169, 13098032672, 1645077815, 6132955598, 462598181, 253894364, 513553347, 25849410, 181383253, 676, 19263298570, 20313446945, 12526843704, 4958670543, 62711718, 257007645, 483821156, 282455443, 40580382, 746, 14516133899, 27145752610, 7049914425, 6712955984, 2427210343, 99784062, 555506453, 373280236, 13356387, 7246573580, 31471907619, 12192846906, 2025813585, 831813320, 1174529535, 142391126, 469005, 8912788, 115297011, 36283294, 21911583, 886, 23078322189, 8139170852, 10355437627, 264112210, 268913897, 1271513728, 153859479, 132818734, 67542917, 109227772, 61734083, 53074, 956, 41483550734, 18402001957, 16009236540, 3389368403, 1617006826, 827558529, 618392, 142592815, 10399878, 48852221, 66709444, 16209747, 1026, 72761737231, 31690063910, 8052146237, 9093709908, 700907627, 753794, 279939271, 72422622, 36223221, 12044, 74913447952, 19711705127, 7456751678, 2584879189, 800876, 647421059, 322509466, 600753, 116511944, 40388959, 11598870, 37805, 2918716, 1450143, 5030, 203489297, 11659935784, 7946256447, 6506569814, 4696363117, 681689220, 2543771, 169150642, 124001481, 62000864, 38750647, 119502, 15142757, 4844116, 15243, 15722938386, 10975985705, 6096576576, 7383552087, 4627026030, 574127237, 1457692316, 421533875, 182183754, 81387105, 64760152, 377839, 5391126, 9067193, 2585632, 28156887059, 9157017642, 21863792705, 7498956888, 657571951, 977408134, 1191731357, 449725620, 161802443, 165364706, 27114489, 1192592, 8843335, 10880238, 91421, 42147151892, 40358707243, 6204162114, 605380697, 577683568, 2087672967, 958272158, 84328117, 25780812, 100773347, 69366778, 3756081, 15800192, 510367, 4663224, 100262936597, 26960068652, 10151477315, 12495560794, 1850810481, 460112008, 189640863, 20207798, 301624781, 53369060, 14152059, 11804242, 17754825, 8895800, 5367991, 91854307350, 10417897517, 21082808388, 6645526619, 2889406578, 2871530633, 844233376, 296985015, 242883150, 74821989, 89617084, 37021811, 3669442, 3136233, 939848]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.2, G.5, G.6, G.9, G.10, G.13, G.17, G.18, G.19, G.20, G.21, G.22, G.23]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "d4", "e", "f", "f2", "f4", "g", "g2", "g4", "g8", "h", "i", "j", "k", "l", "m", "n"]);
 
Copy content gap:G := PcGroupCode(1476863671028297846821754971870636697560676922297518579205119107735848919750846082834732222043282948908171329595355781427648477823669677371432393027989973804411262725360772895442859619954391010355008656887109337608474119878221577638617972997453179322370248326927117479102289270377332597558218250847199419078472528795827157881941369971318011823738185247133554772958981744868034438314780093821436126532910529387948277961874890578783387432219036719396796625568261686515980496709446629343248769888100448992723162552609529483811584105557818125339515973346748289175119668167637512162324325409773588140059501681692459006197375818387361855517338809190776915057986818884001043895609963384680082617250576541709459188322330920719326481328355489294420762110367757856498267627153714712173274964047177214247788980227462764062728955819714172898351681046698615927893156669671974407330550819018427350653299700721283115116928699081645859127218059295124290625170615211174093261807588354403977751829603305402357396439684039487908437472348780813571027926848825059285225510329161443711085646407194708872828416300363760430302886106617260396106610682695502077237048968671968242228303225152111166978495771119514245648642634958636185396913751165150469714884560793146101179799000003566674337909839576951013454312371805789467183407762882978460137759024325590596086998050709999599220601626036494935768615065814654748834674618242315522210273554610125617333531424386912666744032332465302086272856167263190829232640151447862064768656350401259857557999801155456123946406628624220390839196501790535430309132656992727914543011008992881417316656629901485651017891385338032961883610473717307806009677125956052171073352429103545458479166086353289063733030005455645510861861778301647653076287459399309332676940766595091804255038959322613403029915229807785001841105318857754516246250161672460163345217742281560158259257594371610037022579491224905915644741402994147583,214990848); a := G.1; b := G.2; c := G.5; d := G.6; e := G.9; f := G.10; g := G.13; h := G.17; i := G.18; j := G.19; k := G.20; l := G.21; m := G.22; n := G.23;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1476863671028297846821754971870636697560676922297518579205119107735848919750846082834732222043282948908171329595355781427648477823669677371432393027989973804411262725360772895442859619954391010355008656887109337608474119878221577638617972997453179322370248326927117479102289270377332597558218250847199419078472528795827157881941369971318011823738185247133554772958981744868034438314780093821436126532910529387948277961874890578783387432219036719396796625568261686515980496709446629343248769888100448992723162552609529483811584105557818125339515973346748289175119668167637512162324325409773588140059501681692459006197375818387361855517338809190776915057986818884001043895609963384680082617250576541709459188322330920719326481328355489294420762110367757856498267627153714712173274964047177214247788980227462764062728955819714172898351681046698615927893156669671974407330550819018427350653299700721283115116928699081645859127218059295124290625170615211174093261807588354403977751829603305402357396439684039487908437472348780813571027926848825059285225510329161443711085646407194708872828416300363760430302886106617260396106610682695502077237048968671968242228303225152111166978495771119514245648642634958636185396913751165150469714884560793146101179799000003566674337909839576951013454312371805789467183407762882978460137759024325590596086998050709999599220601626036494935768615065814654748834674618242315522210273554610125617333531424386912666744032332465302086272856167263190829232640151447862064768656350401259857557999801155456123946406628624220390839196501790535430309132656992727914543011008992881417316656629901485651017891385338032961883610473717307806009677125956052171073352429103545458479166086353289063733030005455645510861861778301647653076287459399309332676940766595091804255038959322613403029915229807785001841105318857754516246250161672460163345217742281560158259257594371610037022579491224905915644741402994147583,214990848)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.10; g = G.13; h = G.17; i = G.18; j = G.19; k = G.20; l = G.21; m = G.22; n = G.23;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1476863671028297846821754971870636697560676922297518579205119107735848919750846082834732222043282948908171329595355781427648477823669677371432393027989973804411262725360772895442859619954391010355008656887109337608474119878221577638617972997453179322370248326927117479102289270377332597558218250847199419078472528795827157881941369971318011823738185247133554772958981744868034438314780093821436126532910529387948277961874890578783387432219036719396796625568261686515980496709446629343248769888100448992723162552609529483811584105557818125339515973346748289175119668167637512162324325409773588140059501681692459006197375818387361855517338809190776915057986818884001043895609963384680082617250576541709459188322330920719326481328355489294420762110367757856498267627153714712173274964047177214247788980227462764062728955819714172898351681046698615927893156669671974407330550819018427350653299700721283115116928699081645859127218059295124290625170615211174093261807588354403977751829603305402357396439684039487908437472348780813571027926848825059285225510329161443711085646407194708872828416300363760430302886106617260396106610682695502077237048968671968242228303225152111166978495771119514245648642634958636185396913751165150469714884560793146101179799000003566674337909839576951013454312371805789467183407762882978460137759024325590596086998050709999599220601626036494935768615065814654748834674618242315522210273554610125617333531424386912666744032332465302086272856167263190829232640151447862064768656350401259857557999801155456123946406628624220390839196501790535430309132656992727914543011008992881417316656629901485651017891385338032961883610473717307806009677125956052171073352429103545458479166086353289063733030005455645510861861778301647653076287459399309332676940766595091804255038959322613403029915229807785001841105318857754516246250161672460163345217742281560158259257594371610037022579491224905915644741402994147583,214990848)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.10; g = G.13; h = G.17; i = G.18; j = G.19; k = G.20; l = G.21; m = G.22; n = G.23;
 
Permutation group:Degree $36$ $\langle(1,9,8,3)(2,5,7,4)(10,30,15,33,12,31,11,35,16,28,14,34,17,36,18,32)(13,29) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,9,8,3)(2,5,7,4)(10,30,15,33,12,31,11,35,16,28,14,34,17,36,18,32)(13,29)(19,23,22,21)(20,27,24,26), (1,4,8,5)(2,9,7,3)(10,12,14,13,18,17)(11,16,15)(19,20,23,24,27,25)(21,26,22)(28,29,33,32)(30,34,31,36), (1,32,24,15,9,29,26,16,6,28,20,18,8,36,25,12,7,31,27,14,2,34,22,10,5,35,19,11,3,30,23,17)(4,33,21,13), (1,9,4,8)(2,3,6,5)(11,15,12,17)(13,14,16,18)(19,20,24,21,25,27,23,26)(29,36,33,31,30,32,35,34) >;
 
Copy content gap:G := Group( (1,9,8,3)(2,5,7,4)(10,30,15,33,12,31,11,35,16,28,14,34,17,36,18,32)(13,29)(19,23,22,21)(20,27,24,26), (1,4,8,5)(2,9,7,3)(10,12,14,13,18,17)(11,16,15)(19,20,23,24,27,25)(21,26,22)(28,29,33,32)(30,34,31,36), (1,32,24,15,9,29,26,16,6,28,20,18,8,36,25,12,7,31,27,14,2,34,22,10,5,35,19,11,3,30,23,17)(4,33,21,13), (1,9,4,8)(2,3,6,5)(11,15,12,17)(13,14,16,18)(19,20,24,21,25,27,23,26)(29,36,33,31,30,32,35,34) );
 
Copy content sage:G = PermutationGroup(['(1,9,8,3)(2,5,7,4)(10,30,15,33,12,31,11,35,16,28,14,34,17,36,18,32)(13,29)(19,23,22,21)(20,27,24,26)', '(1,4,8,5)(2,9,7,3)(10,12,14,13,18,17)(11,16,15)(19,20,23,24,27,25)(21,26,22)(28,29,33,32)(30,34,31,36)', '(1,32,24,15,9,29,26,16,6,28,20,18,8,36,25,12,7,31,27,14,2,34,22,10,5,35,19,11,3,30,23,17)(4,33,21,13)', '(1,9,4,8)(2,3,6,5)(11,15,12,17)(13,14,16,18)(19,20,24,21,25,27,23,26)(29,36,33,31,30,32,35,34)'])
 
Transitive group: 36T83506 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^8:C_8.D_8^2)$ . $\SD_{16}$ (2) $(C_3^8:C_8.D_8^2.Q_8)$ . $C_2$ (2) $(C_3^8:C_8.D_8^2.C_8)$ . $C_2$ (2) $(C_3^8:C_8.C_8:D_8.D_8)$ . $C_2$ (2) all 99
Aut. group: $\Aut(C_3^8:(C_4\times C_8).Q_{16})$ $\Aut(C_3^8:C_8.D_4^2)$ $\Aut(C_3^8:C_8.C_8:D_8)$ $\Aut(C_3^8:C_8.C_8:Q_{16})$ all 16

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 349 normal subgroups (101 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $(C_4^2\times C_8^2).C_2^4.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $552 \times 552$ character table is not available for this group.

Rational character table

The $384 \times 384$ rational character table is not available for this group.