Properties

Label 21233664.cv
Order \( 2^{18} \cdot 3^{4} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 3 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{21} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,21,33,30,8,25)(2,22,34,29,7,26)(3,24,35,32,5,28)(4,23,36,31,6,27)(9,16,20,11,14,18,10,15,19,12,13,17), (1,20,34,13,8,10)(2,19,33,14,7,9)(3,17,36,16,6,12)(4,18,35,15,5,11)(21,24)(22,23)(25,28,26,27)(29,32,30,31), (1,15,34,11,7,17,2,16,33,12,8,18)(3,13,35,10,6,20,4,14,36,9,5,19)(21,26,30)(22,25,29)(23,28,32)(24,27,31) >;
 
Copy content gap:G := Group( (1,21,33,30,8,25)(2,22,34,29,7,26)(3,24,35,32,5,28)(4,23,36,31,6,27)(9,16,20,11,14,18,10,15,19,12,13,17), (1,20,34,13,8,10)(2,19,33,14,7,9)(3,17,36,16,6,12)(4,18,35,15,5,11)(21,24)(22,23)(25,28,26,27)(29,32,30,31), (1,15,34,11,7,17,2,16,33,12,8,18)(3,13,35,10,6,20,4,14,36,9,5,19)(21,26,30)(22,25,29)(23,28,32)(24,27,31) );
 
Copy content sage:G = PermutationGroup(['(1,21,33,30,8,25)(2,22,34,29,7,26)(3,24,35,32,5,28)(4,23,36,31,6,27)(9,16,20,11,14,18,10,15,19,12,13,17)', '(1,20,34,13,8,10)(2,19,33,14,7,9)(3,17,36,16,6,12)(4,18,35,15,5,11)(21,24)(22,23)(25,28,26,27)(29,32,30,31)', '(1,15,34,11,7,17,2,16,33,12,8,18)(3,13,35,10,6,20,4,14,36,9,5,19)(21,26,30)(22,25,29)(23,28,32)(24,27,31)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(530171928420089587996535009749439623377514261664114019977451805066909560725432799716184928337192428601585701677295174096011962127714348633990508847612489463509068125130694203900412319421026147975838796606797408169795303838149330756626096555061551752147215956284081253510681425531787541429387910989908440003739506482187297299808833313169554335709993230218709714568445939074128447323177968014309619303526617788169256281150062455297944331390361025546348699006015988596904431627593269432262611490204511349421226930208950698766622131080856697873180613324322247684716476372530545435740618077569237210135263339877829889574006602454138048004805363832355714286416638647507849930672886219250714954709278377090614983326337779235839553142131923289451548442112477012189985627570091631565775563394241817427657265408441210534766358001090719466683715255975220498491042988655342504581176902200834647961807245983091653484666136962554378077745263846847775741760981181292567552901031884847495623019304699017453165038888318496545141877682881252196438764871149673946226627919089479290849707072531763405833127129662218950492711086436564541601550195319017649663937174580623117573627110343349226120808277182966901445429075968,21233664)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.10; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19; o = G.20; p = G.21; q = G.22;
 

Group information

Description:$C_2^{10}.A_4^3:D_6$
Order: \(21233664\)\(\medspace = 2^{18} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2\times C_2^{12}.C_6^2.C_6^2.C_2^4$, of order \(169869312\)\(\medspace = 2^{21} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 18, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18 36
Elements 1 86783 54368 1223936 5837728 589824 9312256 2949120 1179648 21233664
Conjugacy classes   1 398 10 187 595 2 223 6 2 1424
Divisions 1 398 6 187 319 1 116 3 1 1032
Autjugacy classes 1 155 6 79 193 1 87 3 1 526

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q \mid c^{12}=d^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([22, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 44, 30108695, 1207922366, 321102366, 178, 1111007043, 884214697, 132751941, 1126159324, 1117642046, 318465228, 137413720, 312, 1123688021, 905489667, 465624769, 146489183, 379, 937338870, 199120180, 285649106, 109819320, 358495111, 221470685, 590764467, 35033929, 37568351, 32675925, 8090155, 513, 1672858448, 82457922, 74264308, 196416866, 89475504, 49007494, 12268616, 4300464969, 1652270431, 330929333, 382773675, 1900897, 14319479, 5472861, 6387643, 3193265, 3181169386, 1891671440, 395646822, 315174100, 28078874, 54384780, 32354332, 24848, 1596660, 4961772299, 2390389089, 126650359, 184415693, 114371235, 5949625, 8615519, 190245, 98395, 4331486028, 114347410, 720678872, 153853206, 109158292, 10955066, 26177724, 11631214, 1880066, 4655097229, 1188123587, 821487801, 534752143, 160232789, 47162931, 30622429, 12507431, 4468653, 4261831214, 3189423636, 5346058, 25874720, 87674502, 37255804, 42387986, 360528, 4668040, 6061879311, 3054433573, 39156539, 78883281, 12735463, 97048637, 51299571, 405673, 2167103, 1172014288, 2148935222, 1304984796, 572071978, 94382744, 45454590, 18694912, 5035706, 2374344, 8330522129, 1705416807, 47472541, 531435251, 50808489, 58592287, 31840925, 18808587, 5273725, 5780237778, 1343756344, 1050591230, 458121396, 42330130, 116539364, 24712728, 19923724, 2389064, 8174390419, 3529785641, 1149889023, 577843285, 216374507, 112353249, 16640071, 7447613, 6509115, 3084770324, 1140323248, 418577630, 127284804, 126661126, 50474114, 155406, 260764, 3587950101, 3937649803, 722294561, 349020231, 201752605, 68223803, 19615221, 17708767, 5700749]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q := Explode([G.1, G.3, G.5, G.8, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "c4", "d", "d2", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q"]);
 
Copy content gap:G := PcGroupCode(530171928420089587996535009749439623377514261664114019977451805066909560725432799716184928337192428601585701677295174096011962127714348633990508847612489463509068125130694203900412319421026147975838796606797408169795303838149330756626096555061551752147215956284081253510681425531787541429387910989908440003739506482187297299808833313169554335709993230218709714568445939074128447323177968014309619303526617788169256281150062455297944331390361025546348699006015988596904431627593269432262611490204511349421226930208950698766622131080856697873180613324322247684716476372530545435740618077569237210135263339877829889574006602454138048004805363832355714286416638647507849930672886219250714954709278377090614983326337779235839553142131923289451548442112477012189985627570091631565775563394241817427657265408441210534766358001090719466683715255975220498491042988655342504581176902200834647961807245983091653484666136962554378077745263846847775741760981181292567552901031884847495623019304699017453165038888318496545141877682881252196438764871149673946226627919089479290849707072531763405833127129662218950492711086436564541601550195319017649663937174580623117573627110343349226120808277182966901445429075968,21233664); a := G.1; b := G.3; c := G.5; d := G.8; e := G.10; f := G.11; g := G.12; h := G.13; i := G.14; j := G.15; k := G.16; l := G.17; m := G.18; n := G.19; o := G.20; p := G.21; q := G.22;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(530171928420089587996535009749439623377514261664114019977451805066909560725432799716184928337192428601585701677295174096011962127714348633990508847612489463509068125130694203900412319421026147975838796606797408169795303838149330756626096555061551752147215956284081253510681425531787541429387910989908440003739506482187297299808833313169554335709993230218709714568445939074128447323177968014309619303526617788169256281150062455297944331390361025546348699006015988596904431627593269432262611490204511349421226930208950698766622131080856697873180613324322247684716476372530545435740618077569237210135263339877829889574006602454138048004805363832355714286416638647507849930672886219250714954709278377090614983326337779235839553142131923289451548442112477012189985627570091631565775563394241817427657265408441210534766358001090719466683715255975220498491042988655342504581176902200834647961807245983091653484666136962554378077745263846847775741760981181292567552901031884847495623019304699017453165038888318496545141877682881252196438764871149673946226627919089479290849707072531763405833127129662218950492711086436564541601550195319017649663937174580623117573627110343349226120808277182966901445429075968,21233664)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.10; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19; o = G.20; p = G.21; q = G.22;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(530171928420089587996535009749439623377514261664114019977451805066909560725432799716184928337192428601585701677295174096011962127714348633990508847612489463509068125130694203900412319421026147975838796606797408169795303838149330756626096555061551752147215956284081253510681425531787541429387910989908440003739506482187297299808833313169554335709993230218709714568445939074128447323177968014309619303526617788169256281150062455297944331390361025546348699006015988596904431627593269432262611490204511349421226930208950698766622131080856697873180613324322247684716476372530545435740618077569237210135263339877829889574006602454138048004805363832355714286416638647507849930672886219250714954709278377090614983326337779235839553142131923289451548442112477012189985627570091631565775563394241817427657265408441210534766358001090719466683715255975220498491042988655342504581176902200834647961807245983091653484666136962554378077745263846847775741760981181292567552901031884847495623019304699017453165038888318496545141877682881252196438764871149673946226627919089479290849707072531763405833127129662218950492711086436564541601550195319017649663937174580623117573627110343349226120808277182966901445429075968,21233664)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.10; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19; o = G.20; p = G.21; q = G.22;
 
Permutation group:Degree $36$ $\langle(1,21,33,30,8,25)(2,22,34,29,7,26)(3,24,35,32,5,28)(4,23,36,31,6,27)(9,16,20,11,14,18,10,15,19,12,13,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,21,33,30,8,25)(2,22,34,29,7,26)(3,24,35,32,5,28)(4,23,36,31,6,27)(9,16,20,11,14,18,10,15,19,12,13,17), (1,20,34,13,8,10)(2,19,33,14,7,9)(3,17,36,16,6,12)(4,18,35,15,5,11)(21,24)(22,23)(25,28,26,27)(29,32,30,31), (1,15,34,11,7,17,2,16,33,12,8,18)(3,13,35,10,6,20,4,14,36,9,5,19)(21,26,30)(22,25,29)(23,28,32)(24,27,31) >;
 
Copy content gap:G := Group( (1,21,33,30,8,25)(2,22,34,29,7,26)(3,24,35,32,5,28)(4,23,36,31,6,27)(9,16,20,11,14,18,10,15,19,12,13,17), (1,20,34,13,8,10)(2,19,33,14,7,9)(3,17,36,16,6,12)(4,18,35,15,5,11)(21,24)(22,23)(25,28,26,27)(29,32,30,31), (1,15,34,11,7,17,2,16,33,12,8,18)(3,13,35,10,6,20,4,14,36,9,5,19)(21,26,30)(22,25,29)(23,28,32)(24,27,31) );
 
Copy content sage:G = PermutationGroup(['(1,21,33,30,8,25)(2,22,34,29,7,26)(3,24,35,32,5,28)(4,23,36,31,6,27)(9,16,20,11,14,18,10,15,19,12,13,17)', '(1,20,34,13,8,10)(2,19,33,14,7,9)(3,17,36,16,6,12)(4,18,35,15,5,11)(21,24)(22,23)(25,28,26,27)(29,32,30,31)', '(1,15,34,11,7,17,2,16,33,12,8,18)(3,13,35,10,6,20,4,14,36,9,5,19)(21,26,30)(22,25,29)(23,28,32)(24,27,31)'])
 
Transitive group: 36T66063 36T66720 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{10}$ . $(A_4^3:D_6)$ (2) $C_2^{13}$ . $(C_6^3:D_6)$ $(C_2^8.A_4\wr S_3)$ . $D_4$ (2) $C_2^8$ . $(D_4\times A_4\wr S_3)$ all 82

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} \times C_{6} \simeq C_{2}^{3} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 104 normal subgroups (100 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^{12}.C_6^2:C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^7$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 9 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1424 \times 1424$ character table is not available for this group.

Rational character table

The $1032 \times 1032$ rational character table is not available for this group.