Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q \mid c^{12}=d^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([22, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 44, 30108695, 1207922366, 321102366, 178, 1111007043, 884214697, 132751941, 1126159324, 1117642046, 318465228, 137413720, 312, 1123688021, 905489667, 465624769, 146489183, 379, 937338870, 199120180, 285649106, 109819320, 358495111, 221470685, 590764467, 35033929, 37568351, 32675925, 8090155, 513, 1672858448, 82457922, 74264308, 196416866, 89475504, 49007494, 12268616, 4300464969, 1652270431, 330929333, 382773675, 1900897, 14319479, 5472861, 6387643, 3193265, 3181169386, 1891671440, 395646822, 315174100, 28078874, 54384780, 32354332, 24848, 1596660, 4961772299, 2390389089, 126650359, 184415693, 114371235, 5949625, 8615519, 190245, 98395, 4331486028, 114347410, 720678872, 153853206, 109158292, 10955066, 26177724, 11631214, 1880066, 4655097229, 1188123587, 821487801, 534752143, 160232789, 47162931, 30622429, 12507431, 4468653, 4261831214, 3189423636, 5346058, 25874720, 87674502, 37255804, 42387986, 360528, 4668040, 6061879311, 3054433573, 39156539, 78883281, 12735463, 97048637, 51299571, 405673, 2167103, 1172014288, 2148935222, 1304984796, 572071978, 94382744, 45454590, 18694912, 5035706, 2374344, 8330522129, 1705416807, 47472541, 531435251, 50808489, 58592287, 31840925, 18808587, 5273725, 5780237778, 1343756344, 1050591230, 458121396, 42330130, 116539364, 24712728, 19923724, 2389064, 8174390419, 3529785641, 1149889023, 577843285, 216374507, 112353249, 16640071, 7447613, 6509115, 3084770324, 1140323248, 418577630, 127284804, 126661126, 50474114, 155406, 260764, 3587950101, 3937649803, 722294561, 349020231, 201752605, 68223803, 19615221, 17708767, 5700749]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q := Explode([G.1, G.3, G.5, G.8, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "c4", "d", "d2", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q"]);
gap:G := PcGroupCode(530171928420089587996535009749439623377514261664114019977451805066909560725432799716184928337192428601585701677295174096011962127714348633990508847612489463509068125130694203900412319421026147975838796606797408169795303838149330756626096555061551752147215956284081253510681425531787541429387910989908440003739506482187297299808833313169554335709993230218709714568445939074128447323177968014309619303526617788169256281150062455297944331390361025546348699006015988596904431627593269432262611490204511349421226930208950698766622131080856697873180613324322247684716476372530545435740618077569237210135263339877829889574006602454138048004805363832355714286416638647507849930672886219250714954709278377090614983326337779235839553142131923289451548442112477012189985627570091631565775563394241817427657265408441210534766358001090719466683715255975220498491042988655342504581176902200834647961807245983091653484666136962554378077745263846847775741760981181292567552901031884847495623019304699017453165038888318496545141877682881252196438764871149673946226627919089479290849707072531763405833127129662218950492711086436564541601550195319017649663937174580623117573627110343349226120808277182966901445429075968,21233664); a := G.1; b := G.3; c := G.5; d := G.8; e := G.10; f := G.11; g := G.12; h := G.13; i := G.14; j := G.15; k := G.16; l := G.17; m := G.18; n := G.19; o := G.20; p := G.21; q := G.22;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(530171928420089587996535009749439623377514261664114019977451805066909560725432799716184928337192428601585701677295174096011962127714348633990508847612489463509068125130694203900412319421026147975838796606797408169795303838149330756626096555061551752147215956284081253510681425531787541429387910989908440003739506482187297299808833313169554335709993230218709714568445939074128447323177968014309619303526617788169256281150062455297944331390361025546348699006015988596904431627593269432262611490204511349421226930208950698766622131080856697873180613324322247684716476372530545435740618077569237210135263339877829889574006602454138048004805363832355714286416638647507849930672886219250714954709278377090614983326337779235839553142131923289451548442112477012189985627570091631565775563394241817427657265408441210534766358001090719466683715255975220498491042988655342504581176902200834647961807245983091653484666136962554378077745263846847775741760981181292567552901031884847495623019304699017453165038888318496545141877682881252196438764871149673946226627919089479290849707072531763405833127129662218950492711086436564541601550195319017649663937174580623117573627110343349226120808277182966901445429075968,21233664)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.10; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19; o = G.20; p = G.21; q = G.22;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(530171928420089587996535009749439623377514261664114019977451805066909560725432799716184928337192428601585701677295174096011962127714348633990508847612489463509068125130694203900412319421026147975838796606797408169795303838149330756626096555061551752147215956284081253510681425531787541429387910989908440003739506482187297299808833313169554335709993230218709714568445939074128447323177968014309619303526617788169256281150062455297944331390361025546348699006015988596904431627593269432262611490204511349421226930208950698766622131080856697873180613324322247684716476372530545435740618077569237210135263339877829889574006602454138048004805363832355714286416638647507849930672886219250714954709278377090614983326337779235839553142131923289451548442112477012189985627570091631565775563394241817427657265408441210534766358001090719466683715255975220498491042988655342504581176902200834647961807245983091653484666136962554378077745263846847775741760981181292567552901031884847495623019304699017453165038888318496545141877682881252196438764871149673946226627919089479290849707072531763405833127129662218950492711086436564541601550195319017649663937174580623117573627110343349226120808277182966901445429075968,21233664)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.10; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19; o = G.20; p = G.21; q = G.22;
|
Permutation group: | Degree $36$
$\langle(1,21,33,30,8,25)(2,22,34,29,7,26)(3,24,35,32,5,28)(4,23,36,31,6,27)(9,16,20,11,14,18,10,15,19,12,13,17) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,21,33,30,8,25)(2,22,34,29,7,26)(3,24,35,32,5,28)(4,23,36,31,6,27)(9,16,20,11,14,18,10,15,19,12,13,17), (1,20,34,13,8,10)(2,19,33,14,7,9)(3,17,36,16,6,12)(4,18,35,15,5,11)(21,24)(22,23)(25,28,26,27)(29,32,30,31), (1,15,34,11,7,17,2,16,33,12,8,18)(3,13,35,10,6,20,4,14,36,9,5,19)(21,26,30)(22,25,29)(23,28,32)(24,27,31) >;
gap:G := Group( (1,21,33,30,8,25)(2,22,34,29,7,26)(3,24,35,32,5,28)(4,23,36,31,6,27)(9,16,20,11,14,18,10,15,19,12,13,17), (1,20,34,13,8,10)(2,19,33,14,7,9)(3,17,36,16,6,12)(4,18,35,15,5,11)(21,24)(22,23)(25,28,26,27)(29,32,30,31), (1,15,34,11,7,17,2,16,33,12,8,18)(3,13,35,10,6,20,4,14,36,9,5,19)(21,26,30)(22,25,29)(23,28,32)(24,27,31) );
sage:G = PermutationGroup(['(1,21,33,30,8,25)(2,22,34,29,7,26)(3,24,35,32,5,28)(4,23,36,31,6,27)(9,16,20,11,14,18,10,15,19,12,13,17)', '(1,20,34,13,8,10)(2,19,33,14,7,9)(3,17,36,16,6,12)(4,18,35,15,5,11)(21,24)(22,23)(25,28,26,27)(29,32,30,31)', '(1,15,34,11,7,17,2,16,33,12,8,18)(3,13,35,10,6,20,4,14,36,9,5,19)(21,26,30)(22,25,29)(23,28,32)(24,27,31)'])
|
Transitive group: |
36T66063 |
36T66720 |
|
|
more information |
Direct product: |
not computed |
Semidirect product: |
not computed |
Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
Possibly split product: |
$C_2^{10}$ . $(A_4^3:D_6)$ (2) |
$C_2^{13}$ . $(C_6^3:D_6)$ |
$(C_2^8.A_4\wr S_3)$ . $D_4$ (2) |
$C_2^8$ . $(D_4\times A_4\wr S_3)$ |
all 82 |
Elements of the group are displayed as permutations of degree 36.
The $1424 \times 1424$ character table is not available for this group.
The $1032 \times 1032$ rational character table is not available for this group.