Properties

Label 2109375.b
Order \( 3^{3} \cdot 5^{7} \)
Exponent \( 3 \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 3^{2} \cdot 5 \)
$\card{Z(G)}$ \( 5 \)
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{4} \cdot 5^{6} \)
$\card{\mathrm{Out}(G)}$ \( 2^{9} \cdot 3 \)
Perm deg. $45$
Trans deg. $45$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,25,30,2,21,26,3,22,27,4,23,28,5,24,29)(6,15,31,9,13,34,7,11,32,10,14,35,8,12,33)(16,38,41)(17,39,42)(18,40,43)(19,36,44)(20,37,45), (1,4,2,5,3)(6,8,10,7,9)(11,20,25,14,18,23,12,16,21,15,19,24,13,17,22)(26,39,32,29,37,35,27,40,33,30,38,31,28,36,34)(41,44,42,45,43) >;
 
Copy content gap:G := Group( (1,25,30,2,21,26,3,22,27,4,23,28,5,24,29)(6,15,31,9,13,34,7,11,32,10,14,35,8,12,33)(16,38,41)(17,39,42)(18,40,43)(19,36,44)(20,37,45), (1,4,2,5,3)(6,8,10,7,9)(11,20,25,14,18,23,12,16,21,15,19,24,13,17,22)(26,39,32,29,37,35,27,40,33,30,38,31,28,36,34)(41,44,42,45,43) );
 
Copy content sage:G = PermutationGroup(['(1,25,30,2,21,26,3,22,27,4,23,28,5,24,29)(6,15,31,9,13,34,7,11,32,10,14,35,8,12,33)(16,38,41)(17,39,42)(18,40,43)(19,36,44)(20,37,45)', '(1,4,2,5,3)(6,8,10,7,9)(11,20,25,14,18,23,12,16,21,15,19,24,13,17,22)(26,39,32,29,37,35,27,40,33,30,38,31,28,36,34)(41,44,42,45,43)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1623018665648792018925986371817796954371996253173868883949581601588094529570897302594558356067869059186679704955829802147550228197959119831864284883044006821367715456311295,2109375)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10;
 

Group information

Description:$C_5^7:\He_3$
Order: \(2109375\)\(\medspace = 3^{3} \cdot 5^{7} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(15\)\(\medspace = 3 \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_5^6.\He_3.Q_8.C_6.C_4^2.C_2$, of order \(648000000\)\(\medspace = 2^{9} \cdot 3^{4} \cdot 5^{6} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_3$ x 3, $C_5$ x 7
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 3 5 15
Elements 1 46250 78124 1985000 2109375
Conjugacy classes   1 10 3004 360 3375
Divisions 1 5 751 45 802
Autjugacy classes 1 2 17 4 24

Minimal presentations

Permutation degree:$45$
Transitive degree:$45$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 9 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h \mid a^{15}=b^{3}=c^{15}=d^{5}=e^{5}=f^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([10, -3, -5, -3, 3, -5, 5, 5, 5, 5, 5, 30, 21056402, 9852462, 7012203, 4968613, 1641383, 153, 17246254, 4523874, 5378405, 461725, 345635, 144802356, 740276, 442086, 101692807, 687627, 45637, 142580258, 1543078, 791138, 167710509, 4494629, 1348539]); a,b,c,d,e,f,g,h := Explode([G.1, G.3, G.4, G.6, G.7, G.8, G.9, G.10]); AssignNames(~G, ["a", "a3", "b", "c", "c3", "d", "e", "f", "g", "h"]);
 
Copy content gap:G := PcGroupCode(1623018665648792018925986371817796954371996253173868883949581601588094529570897302594558356067869059186679704955829802147550228197959119831864284883044006821367715456311295,2109375); a := G.1; b := G.3; c := G.4; d := G.6; e := G.7; f := G.8; g := G.9; h := G.10;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1623018665648792018925986371817796954371996253173868883949581601588094529570897302594558356067869059186679704955829802147550228197959119831864284883044006821367715456311295,2109375)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1623018665648792018925986371817796954371996253173868883949581601588094529570897302594558356067869059186679704955829802147550228197959119831864284883044006821367715456311295,2109375)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.8; g = G.9; h = G.10;
 
Permutation group:Degree $45$ $\langle(1,25,30,2,21,26,3,22,27,4,23,28,5,24,29)(6,15,31,9,13,34,7,11,32,10,14,35,8,12,33) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,25,30,2,21,26,3,22,27,4,23,28,5,24,29)(6,15,31,9,13,34,7,11,32,10,14,35,8,12,33)(16,38,41)(17,39,42)(18,40,43)(19,36,44)(20,37,45), (1,4,2,5,3)(6,8,10,7,9)(11,20,25,14,18,23,12,16,21,15,19,24,13,17,22)(26,39,32,29,37,35,27,40,33,30,38,31,28,36,34)(41,44,42,45,43) >;
 
Copy content gap:G := Group( (1,25,30,2,21,26,3,22,27,4,23,28,5,24,29)(6,15,31,9,13,34,7,11,32,10,14,35,8,12,33)(16,38,41)(17,39,42)(18,40,43)(19,36,44)(20,37,45), (1,4,2,5,3)(6,8,10,7,9)(11,20,25,14,18,23,12,16,21,15,19,24,13,17,22)(26,39,32,29,37,35,27,40,33,30,38,31,28,36,34)(41,44,42,45,43) );
 
Copy content sage:G = PermutationGroup(['(1,25,30,2,21,26,3,22,27,4,23,28,5,24,29)(6,15,31,9,13,34,7,11,32,10,14,35,8,12,33)(16,38,41)(17,39,42)(18,40,43)(19,36,44)(20,37,45)', '(1,4,2,5,3)(6,8,10,7,9)(11,20,25,14,18,23,12,16,21,15,19,24,13,17,22)(26,39,32,29,37,35,27,40,33,30,38,31,28,36,34)(41,44,42,45,43)'])
 
Transitive group: 45T1989 more information
Direct product: $C_5$ $\, \times\, $ $(C_5^6:\He_3)$
Semidirect product: $C_5^7$ $\,\rtimes\,$ $\He_3$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^7:C_3^2)$ . $C_3$ $(C_5^7.C_3)$ . $C_3^2$ $(C_5^6:\He_3)$ . $C_5$ $C_5^6$ . $(C_5\times \He_3)$ all 7

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{3} \times C_{15} \simeq C_{3}^{2} \times C_{5}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 16 normal subgroups (8 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_5$ $G/Z \simeq$ $C_5^6:\He_3$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_5^6:C_3$ $G/G' \simeq$ $C_3\times C_{15}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_5^7:\He_3$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_5^7$ $G/\operatorname{Fit} \simeq$ $\He_3$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_5^7:\He_3$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_5^7$ $G/\operatorname{soc} \simeq$ $\He_3$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
3-Sylow subgroup: $P_{ 3 } \simeq$ $\He_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^7$

Subgroup diagram and profile

Series

Derived series $C_5^7:\He_3$ $\rhd$ $C_5^6:C_3$ $\rhd$ $C_5^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_5^7:\He_3$ $\rhd$ $C_5^7:C_3^2$ $\rhd$ $C_5^6:C_3^2$ $\rhd$ $C_5^6:C_3$ $\rhd$ $C_5^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_5^7:\He_3$ $\rhd$ $C_5^6:C_3$ $\rhd$ $C_5^6$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_5$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3375 \times 3375$ character table is not available for this group.

Rational character table

The $802 \times 802$ rational character table is not available for this group.