Properties

Label 208...200.a
Order \( 2^{15} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \cdot 23^{2} \)
Exponent \( 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{15} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \cdot 23^{2} \)
$\card{\mathrm{Out}(G)}$ \( 1 \)
Perm deg. $46$
Trans deg. $46$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 46 | (1,46,5,36,2,40,18,33,17,44,19,35,9,24)(3,42,10,30,20,25,14,43,7,29,6,37,13,34)(4,39,22,32,15,27,23,26,21,41,11,31,8,28)(12,38)(16,45), (1,21,4,17,6,15,5,18,10,8,13,2,16,23)(3,20,12,11,7,19,14)(9,22)(24,45,30,35,37,27,43)(25,46,38,40,41,36,42)(26,32,31,28,34,33,29) >;
 
Copy content gap:G := Group( (1,46,5,36,2,40,18,33,17,44,19,35,9,24)(3,42,10,30,20,25,14,43,7,29,6,37,13,34)(4,39,22,32,15,27,23,26,21,41,11,31,8,28)(12,38)(16,45), (1,21,4,17,6,15,5,18,10,8,13,2,16,23)(3,20,12,11,7,19,14)(9,22)(24,45,30,35,37,27,43)(25,46,38,40,41,36,42)(26,32,31,28,34,33,29) );
 
Copy content sage:G = PermutationGroup(['(1,46,5,36,2,40,18,33,17,44,19,35,9,24)(3,42,10,30,20,25,14,43,7,29,6,37,13,34)(4,39,22,32,15,27,23,26,21,41,11,31,8,28)(12,38)(16,45)', '(1,21,4,17,6,15,5,18,10,8,13,2,16,23)(3,20,12,11,7,19,14)(9,22)(24,45,30,35,37,27,43)(25,46,38,40,41,36,42)(26,32,31,28,34,33,29)'])
 

Group information

Description:$M_{23}\wr C_2$
Order: \(208119169843200\)\(\medspace = 2^{15} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \cdot 23^{2} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(425040\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 23 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(208119169843200\)\(\medspace = 2^{15} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 11^{2} \cdot 23^{2} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $M_{23}$ x 2
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$1$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 10 11 12 14 15 16 20 21 22 23 24 28 30 33 35 40 42 44 46 55 56 60 66 69 70 77 88 92 105 115 120 138 154 161 165 184 210 253 322 345
Elements 1 24610575 3211828928 142753509360 462488404224 1403980226880 2123667912960 5700439261440 6942467347200 3439989987840 9249740881920 21258774408960 3931142595072 13007448115200 433581603840 165173944320 18934001856000 786841735680 2312435220480 16723861862400 17353587525120 210221383680 1982087331840 1734326415360 5120392273920 1182495283200 9055392192000 2522656604160 7432827494400 867163207680 3153320755200 100540661760 1982087331840 5405692723200 4729981132800 565541222400 3964174663680 1206487941120 3468652830720 1508109926400 5405692723200 2585331302400 5045313208320 2262164889600 3964174663680 3290421657600 2585331302400 2412975882240 208119169843200
Conjugacy classes   1 3 2 4 2 6 5 5 2 5 3 15 10 1 1 2 4 5 2 6 7 2 2 1 6 2 4 2 4 2 2 2 2 4 2 2 4 2 2 2 4 4 4 2 4 4 4 4 170
Divisions 1 3 2 4 2 6 3 5 2 3 3 8 6 1 1 1 2 3 2 3 4 1 1 1 3 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 96
Autjugacy classes 1 3 2 4 2 6 5 5 2 5 3 15 10 1 1 2 4 5 2 6 7 2 2 1 6 2 4 2 4 2 2 2 2 4 2 2 4 2 2 2 4 4 4 2 4 4 4 4 170

Minimal presentations

Permutation degree:$46$
Transitive degree:$46$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 44 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $46$ $\langle(1,46,5,36,2,40,18,33,17,44,19,35,9,24)(3,42,10,30,20,25,14,43,7,29,6,37,13,34) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 46 | (1,46,5,36,2,40,18,33,17,44,19,35,9,24)(3,42,10,30,20,25,14,43,7,29,6,37,13,34)(4,39,22,32,15,27,23,26,21,41,11,31,8,28)(12,38)(16,45), (1,21,4,17,6,15,5,18,10,8,13,2,16,23)(3,20,12,11,7,19,14)(9,22)(24,45,30,35,37,27,43)(25,46,38,40,41,36,42)(26,32,31,28,34,33,29) >;
 
Copy content gap:G := Group( (1,46,5,36,2,40,18,33,17,44,19,35,9,24)(3,42,10,30,20,25,14,43,7,29,6,37,13,34)(4,39,22,32,15,27,23,26,21,41,11,31,8,28)(12,38)(16,45), (1,21,4,17,6,15,5,18,10,8,13,2,16,23)(3,20,12,11,7,19,14)(9,22)(24,45,30,35,37,27,43)(25,46,38,40,41,36,42)(26,32,31,28,34,33,29) );
 
Copy content sage:G = PermutationGroup(['(1,46,5,36,2,40,18,33,17,44,19,35,9,24)(3,42,10,30,20,25,14,43,7,29,6,37,13,34)(4,39,22,32,15,27,23,26,21,41,11,31,8,28)(12,38)(16,45)', '(1,21,4,17,6,15,5,18,10,8,13,2,16,23)(3,20,12,11,7,19,14)(9,22)(24,45,30,35,37,27,43)(25,46,38,40,41,36,42)(26,32,31,28,34,33,29)'])
 
Transitive group: 46T42 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $(M_{23}.M_{23})$ . $C_2$ more information

Elements of the group are displayed as permutations of degree 46.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 3 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.C_2^5.C_2^4.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^2$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}^2$
23-Sylow subgroup: $P_{ 23 } \simeq$ $C_{23}^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $170 \times 170$ character table is not available for this group.

Rational character table

The $96 \times 96$ rational character table is not available for this group.