Properties

Label 20480.kz
Order \( 2^{12} \cdot 5 \)
Exponent \( 2^{3} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 4
$\card{\Aut(G)}$ \( 2^{17} \cdot 3 \cdot 5 \)
$\card{\mathrm{Out}(G)}$ \( 2^{7} \cdot 3 \)
Perm deg. $22$
Trans deg. $40$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 22 | (1,2,4,10,6,8,5,3,7,12)(9,13,17,20,16,11,15,19,18,14)(21,22), (1,3,8,4)(2,5)(6,11,15,7,12,9,13,10)(14,19,16,17)(18,20)(21,22), (2,6,5,12)(3,9,14,7,4,11,16,10)(13,18,15,20)(17,19)(21,22) >;
 
Copy content gap:G := Group( (1,2,4,10,6,8,5,3,7,12)(9,13,17,20,16,11,15,19,18,14)(21,22), (1,3,8,4)(2,5)(6,11,15,7,12,9,13,10)(14,19,16,17)(18,20)(21,22), (2,6,5,12)(3,9,14,7,4,11,16,10)(13,18,15,20)(17,19)(21,22) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,10,6,8,5,3,7,12)(9,13,17,20,16,11,15,19,18,14)(21,22)', '(1,3,8,4)(2,5)(6,11,15,7,12,9,13,10)(14,19,16,17)(18,20)(21,22)', '(2,6,5,12)(3,9,14,7,4,11,16,10)(13,18,15,20)(17,19)(21,22)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2173842114398796979970771630187138958876456519669739111580437031330911606375625440000145006143235613261295080137320946095005191527679931849475098609963797084363959144053131257463177216,20480)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13;
 

Group information

Description:$C_2^6.C_2\wr D_5$
Order: \(20480\)\(\medspace = 2^{12} \cdot 5 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_4^4.C_{30}.C_2^4.C_2^4$, of order \(1966080\)\(\medspace = 2^{17} \cdot 3 \cdot 5 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $C_5$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10
Elements 1 1407 3200 1024 7680 7168 20480
Conjugacy classes   1 25 86 2 48 14 176
Divisions 1 25 86 1 36 5 154
Autjugacy classes 1 8 12 1 2 3 27

Minimal presentations

Permutation degree:$22$
Transitive degree:$40$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none not computed none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h \mid b^{10}=c^{4}=d^{4}=e^{4}=f^{4}=g^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 185120, 335869, 66, 371126, 487763, 86336, 41109, 146, 221004, 5217, 13030, 368165, 140418, 89731, 226, 247526, 36419, 61912, 166407, 83220, 146153, 306, 374408, 187221, 19924, 499209, 594122, 66985, 386, 185923, 98706, 652104, 305797, 1139085, 547598]); a,b,c,d,e,f,g,h := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.12, G.13]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "h"]);
 
Copy content gap:G := PcGroupCode(2173842114398796979970771630187138958876456519669739111580437031330911606375625440000145006143235613261295080137320946095005191527679931849475098609963797084363959144053131257463177216,20480); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12; h := G.13;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2173842114398796979970771630187138958876456519669739111580437031330911606375625440000145006143235613261295080137320946095005191527679931849475098609963797084363959144053131257463177216,20480)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2173842114398796979970771630187138958876456519669739111580437031330911606375625440000145006143235613261295080137320946095005191527679931849475098609963797084363959144053131257463177216,20480)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13;
 
Permutation group:Degree $22$ $\langle(1,2,4,10,6,8,5,3,7,12)(9,13,17,20,16,11,15,19,18,14)(21,22), (1,3,8,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 22 | (1,2,4,10,6,8,5,3,7,12)(9,13,17,20,16,11,15,19,18,14)(21,22), (1,3,8,4)(2,5)(6,11,15,7,12,9,13,10)(14,19,16,17)(18,20)(21,22), (2,6,5,12)(3,9,14,7,4,11,16,10)(13,18,15,20)(17,19)(21,22) >;
 
Copy content gap:G := Group( (1,2,4,10,6,8,5,3,7,12)(9,13,17,20,16,11,15,19,18,14)(21,22), (1,3,8,4)(2,5)(6,11,15,7,12,9,13,10)(14,19,16,17)(18,20)(21,22), (2,6,5,12)(3,9,14,7,4,11,16,10)(13,18,15,20)(17,19)(21,22) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,10,6,8,5,3,7,12)(9,13,17,20,16,11,15,19,18,14)(21,22)', '(1,3,8,4)(2,5)(6,11,15,7,12,9,13,10)(14,19,16,17)(18,20)(21,22)', '(2,6,5,12)(3,9,14,7,4,11,16,10)(13,18,15,20)(17,19)(21,22)'])
 
Transitive group: 40T11751 40T12820 40T13578 40T13835 all 5
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_4^4:C_{10})$ . $D_4$ (2) $C_4^4$ . $(C_{10}:D_4)$ $C_2^6$ . $(C_2\wr D_5)$ (3) $(C_2^7.C_2^4)$ . $D_5$ all 24

Elements of the group are displayed as permutations of degree 22.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 40 normal subgroups (18 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_4^4:C_{10}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^5$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\times C_2^4.C_2^5.C_2^2$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 66 larger groups in the database.

This group is a maximal quotient of 7 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $176 \times 176$ character table is not available for this group.

Rational character table

The $154 \times 154$ rational character table is not available for this group.