Properties

Label 204073344.xh
Order \( 2^{7} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{15} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \cdot 3^{2} \)
Perm deg. not computed
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,5,33,34,25,11,20,22,13,17,8,30)(2,6,31,36,27,10,21,23,14,16,7,29)(3,4,32,35,26,12,19,24,15,18,9,28), (1,23,8,11,31,16,3,24,9,10,33,18,2,22,7,12,32,17)(4,25,28,13,35,21)(5,26,30,15,34,20)(6,27,29,14,36,19) >;
 
Copy content gap:G := Group( (1,5,33,34,25,11,20,22,13,17,8,30)(2,6,31,36,27,10,21,23,14,16,7,29)(3,4,32,35,26,12,19,24,15,18,9,28), (1,23,8,11,31,16,3,24,9,10,33,18,2,22,7,12,32,17)(4,25,28,13,35,21)(5,26,30,15,34,20)(6,27,29,14,36,19) );
 
Copy content sage:G = PermutationGroup(['(1,5,33,34,25,11,20,22,13,17,8,30)(2,6,31,36,27,10,21,23,14,16,7,29)(3,4,32,35,26,12,19,24,15,18,9,28)', '(1,23,8,11,31,16,3,24,9,10,33,18,2,22,7,12,32,17)(4,25,28,13,35,21)(5,26,30,15,34,20)(6,27,29,14,36,19)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(798347891048864276754450004275276207404137011943921970041414790260616352807256591676040637996569562359702752290781214694930868439931571516853591118060622389151180998278447965319180199002564932593983140240680209453597598480103198956517825817654392431251651104753616924832926331846839885232652318430584723873776182673786465624522959563353196095983399577296873786451334676159985443741644018338476321095979021049225857469853785219514905354421121257740250638302965757014467569609429422903663025988591139045510467330792386280244866203227653527651071960153524548386378508605059787992491416982935721426464025283921917995340879830351984457069751594223378792363673266397333747193721599012133164761086537203801993420866935818189006288077109516695192748359051502753335208125343216955967773088623485749010762035870364814088529376380548675507007021064224843857370074273853299587045109357077437668487181211387007256667222352999421902647028505609855381231643343803104896209613182644464525036652387658977827337616784739158924585846478412333066499568717250566563512690412849784703097840404899427031565620231892543459256526263679,204073344)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20;
 

Group information

Description:$C_3^8.C_6^3:S_4:C_6$
Order: \(204073344\)\(\medspace = 2^{7} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(7346640384\)\(\medspace = 2^{9} \cdot 3^{15} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 497799 911978 787320 49870998 13436928 62985600 75582720 204073344
Conjugacy classes   1 10 563 3 2373 166 98 197 3411
Divisions 1 10 533 3 2288 84 50 99 3068
Autjugacy classes 1 10 152 3 436 34 19 27 682

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid c^{6}=d^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([20, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 40, 2814613941, 9231323402, 5855545282, 162, 1422145923, 2723918903, 480867903, 20175199204, 7062310824, 3371757644, 1214644564, 284, 12386960645, 7571676985, 1922869485, 1841201345, 17599357446, 6180254666, 1297665646, 739380666, 10645406, 68252206, 406, 5348321287, 2560481307, 1782481967, 40032067, 11265136568, 5451688828, 5865742488, 203475848, 902489128, 87055668, 11367128, 528, 27885873609, 1056592829, 2283064849, 1510460469, 1471329, 38788881130, 15120103710, 3625896170, 35663170, 390091770, 879230, 5536210, 3758210, 175090, 650, 7569504011, 7290259231, 4990950771, 3421149191, 250179931, 3317891, 553131, 18731400492, 3795231992, 5694608452, 2890772112, 1088043932, 1179472, 15144612, 6511612, 61032, 1471292, 1072732, 772, 9411937933, 9121432353, 6723709493, 1513706953, 45259333, 7543373, 59206464014, 27209779234, 3356121654, 2267481674, 777734, 21814, 3854, 42109332495, 26011330595, 2628802615, 3976903755, 50204295, 8183215, 77015, 9855, 35831400496, 21053363076, 5554144856, 1275361156, 629234016, 55422856, 9090416, 134856, 483736, 57853802897, 28728069157, 2688664377, 5576497997, 1889568097, 45282377, 7339857, 708697, 134177, 69962064498, 6897209798, 5816544538, 1953342198, 1196726498, 26484618, 4414258, 1888058, 314898, 33742886419, 6165864039, 12226176059, 2128123279, 370857739, 61809779, 8640219, 1440259]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j", "k", "l", "m"]);
 
Copy content gap:G := PcGroupCode(798347891048864276754450004275276207404137011943921970041414790260616352807256591676040637996569562359702752290781214694930868439931571516853591118060622389151180998278447965319180199002564932593983140240680209453597598480103198956517825817654392431251651104753616924832926331846839885232652318430584723873776182673786465624522959563353196095983399577296873786451334676159985443741644018338476321095979021049225857469853785219514905354421121257740250638302965757014467569609429422903663025988591139045510467330792386280244866203227653527651071960153524548386378508605059787992491416982935721426464025283921917995340879830351984457069751594223378792363673266397333747193721599012133164761086537203801993420866935818189006288077109516695192748359051502753335208125343216955967773088623485749010762035870364814088529376380548675507007021064224843857370074273853299587045109357077437668487181211387007256667222352999421902647028505609855381231643343803104896209613182644464525036652387658977827337616784739158924585846478412333066499568717250566563512690412849784703097840404899427031565620231892543459256526263679,204073344); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.15; i := G.16; j := G.17; k := G.18; l := G.19; m := G.20;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(798347891048864276754450004275276207404137011943921970041414790260616352807256591676040637996569562359702752290781214694930868439931571516853591118060622389151180998278447965319180199002564932593983140240680209453597598480103198956517825817654392431251651104753616924832926331846839885232652318430584723873776182673786465624522959563353196095983399577296873786451334676159985443741644018338476321095979021049225857469853785219514905354421121257740250638302965757014467569609429422903663025988591139045510467330792386280244866203227653527651071960153524548386378508605059787992491416982935721426464025283921917995340879830351984457069751594223378792363673266397333747193721599012133164761086537203801993420866935818189006288077109516695192748359051502753335208125343216955967773088623485749010762035870364814088529376380548675507007021064224843857370074273853299587045109357077437668487181211387007256667222352999421902647028505609855381231643343803104896209613182644464525036652387658977827337616784739158924585846478412333066499568717250566563512690412849784703097840404899427031565620231892543459256526263679,204073344)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(798347891048864276754450004275276207404137011943921970041414790260616352807256591676040637996569562359702752290781214694930868439931571516853591118060622389151180998278447965319180199002564932593983140240680209453597598480103198956517825817654392431251651104753616924832926331846839885232652318430584723873776182673786465624522959563353196095983399577296873786451334676159985443741644018338476321095979021049225857469853785219514905354421121257740250638302965757014467569609429422903663025988591139045510467330792386280244866203227653527651071960153524548386378508605059787992491416982935721426464025283921917995340879830351984457069751594223378792363673266397333747193721599012133164761086537203801993420866935818189006288077109516695192748359051502753335208125343216955967773088623485749010762035870364814088529376380548675507007021064224843857370074273853299587045109357077437668487181211387007256667222352999421902647028505609855381231643343803104896209613182644464525036652387658977827337616784739158924585846478412333066499568717250566563512690412849784703097840404899427031565620231892543459256526263679,204073344)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20;
 
Permutation group:Degree $36$ $\langle(1,5,33,34,25,11,20,22,13,17,8,30)(2,6,31,36,27,10,21,23,14,16,7,29)(3,4,32,35,26,12,19,24,15,18,9,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,5,33,34,25,11,20,22,13,17,8,30)(2,6,31,36,27,10,21,23,14,16,7,29)(3,4,32,35,26,12,19,24,15,18,9,28), (1,23,8,11,31,16,3,24,9,10,33,18,2,22,7,12,32,17)(4,25,28,13,35,21)(5,26,30,15,34,20)(6,27,29,14,36,19) >;
 
Copy content gap:G := Group( (1,5,33,34,25,11,20,22,13,17,8,30)(2,6,31,36,27,10,21,23,14,16,7,29)(3,4,32,35,26,12,19,24,15,18,9,28), (1,23,8,11,31,16,3,24,9,10,33,18,2,22,7,12,32,17)(4,25,28,13,35,21)(5,26,30,15,34,20)(6,27,29,14,36,19) );
 
Copy content sage:G = PermutationGroup(['(1,5,33,34,25,11,20,22,13,17,8,30)(2,6,31,36,27,10,21,23,14,16,7,29)(3,4,32,35,26,12,19,24,15,18,9,28)', '(1,23,8,11,31,16,3,24,9,10,33,18,2,22,7,12,32,17)(4,25,28,13,35,21)(5,26,30,15,34,20)(6,27,29,14,36,19)'])
 
Transitive group: 36T83245 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{11}$ . $(A_4^2:D_4)$ $(C_3^8.C_6^3:S_4)$ . $C_6$ $C_3^8$ . $(C_6^3:S_4:C_6)$ $(C_3^8.(C_6^3.S_4))$ . $C_6$ all 56

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2} \times C_{6} \simeq C_{2}^{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2} \times C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 70 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_3^4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3411 \times 3411$ character table is not available for this group.

Rational character table

The $3068 \times 3068$ rational character table is not available for this group.