| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid c^{6}=d^{6}=e^{6}=f^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([20, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 40, 2814613941, 9231323402, 5855545282, 162, 1422145923, 2723918903, 480867903, 20175199204, 7062310824, 3371757644, 1214644564, 284, 12386960645, 7571676985, 1922869485, 1841201345, 17599357446, 6180254666, 1297665646, 739380666, 10645406, 68252206, 406, 5348321287, 2560481307, 1782481967, 40032067, 11265136568, 5451688828, 5865742488, 203475848, 902489128, 87055668, 11367128, 528, 27885873609, 1056592829, 2283064849, 1510460469, 1471329, 38788881130, 15120103710, 3625896170, 35663170, 390091770, 879230, 5536210, 3758210, 175090, 650, 7569504011, 7290259231, 4990950771, 3421149191, 250179931, 3317891, 553131, 18731400492, 3795231992, 5694608452, 2890772112, 1088043932, 1179472, 15144612, 6511612, 61032, 1471292, 1072732, 772, 9411937933, 9121432353, 6723709493, 1513706953, 45259333, 7543373, 59206464014, 27209779234, 3356121654, 2267481674, 777734, 21814, 3854, 42109332495, 26011330595, 2628802615, 3976903755, 50204295, 8183215, 77015, 9855, 35831400496, 21053363076, 5554144856, 1275361156, 629234016, 55422856, 9090416, 134856, 483736, 57853802897, 28728069157, 2688664377, 5576497997, 1889568097, 45282377, 7339857, 708697, 134177, 69962064498, 6897209798, 5816544538, 1953342198, 1196726498, 26484618, 4414258, 1888058, 314898, 33742886419, 6165864039, 12226176059, 2128123279, 370857739, 61809779, 8640219, 1440259]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j", "k", "l", "m"]);
gap:G := PcGroupCode(798347891048864276754450004275276207404137011943921970041414790260616352807256591676040637996569562359702752290781214694930868439931571516853591118060622389151180998278447965319180199002564932593983140240680209453597598480103198956517825817654392431251651104753616924832926331846839885232652318430584723873776182673786465624522959563353196095983399577296873786451334676159985443741644018338476321095979021049225857469853785219514905354421121257740250638302965757014467569609429422903663025988591139045510467330792386280244866203227653527651071960153524548386378508605059787992491416982935721426464025283921917995340879830351984457069751594223378792363673266397333747193721599012133164761086537203801993420866935818189006288077109516695192748359051502753335208125343216955967773088623485749010762035870364814088529376380548675507007021064224843857370074273853299587045109357077437668487181211387007256667222352999421902647028505609855381231643343803104896209613182644464525036652387658977827337616784739158924585846478412333066499568717250566563512690412849784703097840404899427031565620231892543459256526263679,204073344); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.15; i := G.16; j := G.17; k := G.18; l := G.19; m := G.20;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(798347891048864276754450004275276207404137011943921970041414790260616352807256591676040637996569562359702752290781214694930868439931571516853591118060622389151180998278447965319180199002564932593983140240680209453597598480103198956517825817654392431251651104753616924832926331846839885232652318430584723873776182673786465624522959563353196095983399577296873786451334676159985443741644018338476321095979021049225857469853785219514905354421121257740250638302965757014467569609429422903663025988591139045510467330792386280244866203227653527651071960153524548386378508605059787992491416982935721426464025283921917995340879830351984457069751594223378792363673266397333747193721599012133164761086537203801993420866935818189006288077109516695192748359051502753335208125343216955967773088623485749010762035870364814088529376380548675507007021064224843857370074273853299587045109357077437668487181211387007256667222352999421902647028505609855381231643343803104896209613182644464525036652387658977827337616784739158924585846478412333066499568717250566563512690412849784703097840404899427031565620231892543459256526263679,204073344)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(798347891048864276754450004275276207404137011943921970041414790260616352807256591676040637996569562359702752290781214694930868439931571516853591118060622389151180998278447965319180199002564932593983140240680209453597598480103198956517825817654392431251651104753616924832926331846839885232652318430584723873776182673786465624522959563353196095983399577296873786451334676159985443741644018338476321095979021049225857469853785219514905354421121257740250638302965757014467569609429422903663025988591139045510467330792386280244866203227653527651071960153524548386378508605059787992491416982935721426464025283921917995340879830351984457069751594223378792363673266397333747193721599012133164761086537203801993420866935818189006288077109516695192748359051502753335208125343216955967773088623485749010762035870364814088529376380548675507007021064224843857370074273853299587045109357077437668487181211387007256667222352999421902647028505609855381231643343803104896209613182644464525036652387658977827337616784739158924585846478412333066499568717250566563512690412849784703097840404899427031565620231892543459256526263679,204073344)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20;
|
| Permutation group: | Degree $36$
$\langle(1,5,33,34,25,11,20,22,13,17,8,30)(2,6,31,36,27,10,21,23,14,16,7,29)(3,4,32,35,26,12,19,24,15,18,9,28) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,5,33,34,25,11,20,22,13,17,8,30)(2,6,31,36,27,10,21,23,14,16,7,29)(3,4,32,35,26,12,19,24,15,18,9,28), (1,23,8,11,31,16,3,24,9,10,33,18,2,22,7,12,32,17)(4,25,28,13,35,21)(5,26,30,15,34,20)(6,27,29,14,36,19) >;
gap:G := Group( (1,5,33,34,25,11,20,22,13,17,8,30)(2,6,31,36,27,10,21,23,14,16,7,29)(3,4,32,35,26,12,19,24,15,18,9,28), (1,23,8,11,31,16,3,24,9,10,33,18,2,22,7,12,32,17)(4,25,28,13,35,21)(5,26,30,15,34,20)(6,27,29,14,36,19) );
sage:G = PermutationGroup(['(1,5,33,34,25,11,20,22,13,17,8,30)(2,6,31,36,27,10,21,23,14,16,7,29)(3,4,32,35,26,12,19,24,15,18,9,28)', '(1,23,8,11,31,16,3,24,9,10,33,18,2,22,7,12,32,17)(4,25,28,13,35,21)(5,26,30,15,34,20)(6,27,29,14,36,19)'])
|
| Transitive group: |
36T83245 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$C_3^{11}$ . $(A_4^2:D_4)$ |
$(C_3^8.C_6^3:S_4)$ . $C_6$ |
$C_3^8$ . $(C_6^3:S_4:C_6)$ |
$(C_3^8.(C_6^3.S_4))$ . $C_6$ |
all 56 |
Elements of the group are displayed as permutations of degree 36.
The $3411 \times 3411$ character table is not available for this group.
The $3068 \times 3068$ rational character table is not available for this group.