Properties

Label 204073344.oy
Order \( 2^{7} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{15} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \cdot 3^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,36)(2,34)(3,35)(4,28,8,32,6,30,7,31,5,29,9,33)(10,22,11,24,12,23)(13,26)(14,25)(15,27)(17,18)(20,21), (1,6,2,4,3,5)(7,34)(8,35)(9,36)(10,33,12,32,11,31)(13,28,15,29,14,30)(16,25,18,27,17,26)(19,24,21,23,20,22) >;
 
Copy content gap:G := Group( (1,36)(2,34)(3,35)(4,28,8,32,6,30,7,31,5,29,9,33)(10,22,11,24,12,23)(13,26)(14,25)(15,27)(17,18)(20,21), (1,6,2,4,3,5)(7,34)(8,35)(9,36)(10,33,12,32,11,31)(13,28,15,29,14,30)(16,25,18,27,17,26)(19,24,21,23,20,22) );
 
Copy content sage:G = PermutationGroup(['(1,36)(2,34)(3,35)(4,28,8,32,6,30,7,31,5,29,9,33)(10,22,11,24,12,23)(13,26)(14,25)(15,27)(17,18)(20,21)', '(1,6,2,4,3,5)(7,34)(8,35)(9,36)(10,33,12,32,11,31)(13,28,15,29,14,30)(16,25,18,27,17,26)(19,24,21,23,20,22)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(676860157422462144300212846664638764273524473249182863600823086346275225954000529049004917745890259849844667984663953350745526159884869658085904591557664224917546084639404225513676765806690307991652748679003611012551280576459587168906056961572132566267314714303045136566469515741996215870145231840026609020141542573912291855022174255099785650244810312321875150845876335595319124082770276931959653017635602814527206898945645700910358695846208567352895402000018722103026422840985117032922280484755743663109084713057214985647841077478729230458617680587498275788785855266008479027758004125557316139637198618806511758763869590961277214878683960922995163301227239841359318849742152862131199090513771247018421330933851076696543997213723702300827865797903953392576838261980377344407473445521437602011363979310180265352418374895291201603929164730744178920468054541713156937004318377115020157656822143148475346265405301543952044442559160100831457903544321793042549806723783316062020622935223094820968294893734462704232144602141816264279467425950653054050945291775,204073344)'); a = G.1; b = G.2; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20;
 

Group information

Description:$C_3^8.C_6^4:D_{12}$
Order: \(204073344\)\(\medspace = 2^{7} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(7346640384\)\(\medspace = 2^{9} \cdot 3^{15} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12
Elements 1 980559 741392 6473520 58009392 16796160 121072320 204073344
Conjugacy classes   1 9 2632 8 4857 20 396 7923
Divisions 1 9 2632 8 4857 14 301 7822

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid b^{12}=c^{6}=d^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([20, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2188484160, 3702242801, 101, 11292612242, 162, 5772869123, 19855960804, 7598283624, 2107461044, 51425464, 284, 7905398405, 2307297625, 879943725, 841986065, 10345352646, 1052940026, 2314995526, 814094886, 1066263326, 449004046, 406, 6474624007, 14838712347, 1970484527, 2380919107, 1158729687, 15358057928, 12897606268, 4387504368, 452913188, 675663208, 399106548, 133074488, 118299568, 528, 29763196809, 7208904029, 2244355249, 4409251269, 1102392089, 32425013290, 1347949710, 1673321810, 708745030, 735387930, 85673410, 101031630, 33685250, 22125370, 650, 24970728971, 24393288991, 4575605811, 5158615751, 1578666331, 128551811, 41042626572, 20012728352, 6917788852, 4299272712, 674012, 18892, 3332, 54757799053, 6252187233, 1164159413, 7020397513, 934906653, 7849093, 34530893, 6933, 42209337614, 17095276834, 583459254, 5171968874, 686275294, 327700934, 36759774, 7671814, 52852116495, 9950615075, 8085427255, 2275706955, 1047728735, 10629255, 334255, 55895, 33729751696, 12310078116, 12888744536, 738586156, 1360994256, 4655416, 42885056, 11069256, 65393809937, 29467946917, 8126697657, 1816940237, 1518238177, 28754057, 38033457, 12590857, 42897087378, 14296475558, 4629339418, 8394321678, 2856224498, 271443258, 56794978, 1664618, 22902470419, 26832393639, 19646726459, 6601406479, 2471913699, 60576139, 24657779]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.2, G.5, G.7, G.9, G.11, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l", "m", "n"]);
 
Copy content gap:G := PcGroupCode(676860157422462144300212846664638764273524473249182863600823086346275225954000529049004917745890259849844667984663953350745526159884869658085904591557664224917546084639404225513676765806690307991652748679003611012551280576459587168906056961572132566267314714303045136566469515741996215870145231840026609020141542573912291855022174255099785650244810312321875150845876335595319124082770276931959653017635602814527206898945645700910358695846208567352895402000018722103026422840985117032922280484755743663109084713057214985647841077478729230458617680587498275788785855266008479027758004125557316139637198618806511758763869590961277214878683960922995163301227239841359318849742152862131199090513771247018421330933851076696543997213723702300827865797903953392576838261980377344407473445521437602011363979310180265352418374895291201603929164730744178920468054541713156937004318377115020157656822143148475346265405301543952044442559160100831457903544321793042549806723783316062020622935223094820968294893734462704232144602141816264279467425950653054050945291775,204073344); a := G.1; b := G.2; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(676860157422462144300212846664638764273524473249182863600823086346275225954000529049004917745890259849844667984663953350745526159884869658085904591557664224917546084639404225513676765806690307991652748679003611012551280576459587168906056961572132566267314714303045136566469515741996215870145231840026609020141542573912291855022174255099785650244810312321875150845876335595319124082770276931959653017635602814527206898945645700910358695846208567352895402000018722103026422840985117032922280484755743663109084713057214985647841077478729230458617680587498275788785855266008479027758004125557316139637198618806511758763869590961277214878683960922995163301227239841359318849742152862131199090513771247018421330933851076696543997213723702300827865797903953392576838261980377344407473445521437602011363979310180265352418374895291201603929164730744178920468054541713156937004318377115020157656822143148475346265405301543952044442559160100831457903544321793042549806723783316062020622935223094820968294893734462704232144602141816264279467425950653054050945291775,204073344)'); a = G.1; b = G.2; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(676860157422462144300212846664638764273524473249182863600823086346275225954000529049004917745890259849844667984663953350745526159884869658085904591557664224917546084639404225513676765806690307991652748679003611012551280576459587168906056961572132566267314714303045136566469515741996215870145231840026609020141542573912291855022174255099785650244810312321875150845876335595319124082770276931959653017635602814527206898945645700910358695846208567352895402000018722103026422840985117032922280484755743663109084713057214985647841077478729230458617680587498275788785855266008479027758004125557316139637198618806511758763869590961277214878683960922995163301227239841359318849742152862131199090513771247018421330933851076696543997213723702300827865797903953392576838261980377344407473445521437602011363979310180265352418374895291201603929164730744178920468054541713156937004318377115020157656822143148475346265405301543952044442559160100831457903544321793042549806723783316062020622935223094820968294893734462704232144602141816264279467425950653054050945291775,204073344)'); a = G.1; b = G.2; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20;
 
Permutation group:Degree $36$ $\langle(1,36)(2,34)(3,35)(4,28,8,32,6,30,7,31,5,29,9,33)(10,22,11,24,12,23)(13,26) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,36)(2,34)(3,35)(4,28,8,32,6,30,7,31,5,29,9,33)(10,22,11,24,12,23)(13,26)(14,25)(15,27)(17,18)(20,21), (1,6,2,4,3,5)(7,34)(8,35)(9,36)(10,33,12,32,11,31)(13,28,15,29,14,30)(16,25,18,27,17,26)(19,24,21,23,20,22) >;
 
Copy content gap:G := Group( (1,36)(2,34)(3,35)(4,28,8,32,6,30,7,31,5,29,9,33)(10,22,11,24,12,23)(13,26)(14,25)(15,27)(17,18)(20,21), (1,6,2,4,3,5)(7,34)(8,35)(9,36)(10,33,12,32,11,31)(13,28,15,29,14,30)(16,25,18,27,17,26)(19,24,21,23,20,22) );
 
Copy content sage:G = PermutationGroup(['(1,36)(2,34)(3,35)(4,28,8,32,6,30,7,31,5,29,9,33)(10,22,11,24,12,23)(13,26)(14,25)(15,27)(17,18)(20,21)', '(1,6,2,4,3,5)(7,34)(8,35)(9,36)(10,33,12,32,11,31)(13,28,15,29,14,30)(16,25,18,27,17,26)(19,24,21,23,20,22)'])
 
Transitive group: 36T82977 36T82994 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^5)$ . $D_6$ $C_3^8$ . $(C_6^4:D_{12})$ $(C_3^{12}.C_2^4)$ . $D_{12}$ $C_3^{12}$ . $(C_2^4:D_{12})$ all 26

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 28 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_3^4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $7923 \times 7923$ character table is not available for this group.

Rational character table

The $7822 \times 7822$ rational character table is not available for this group.