| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid b^{12}=c^{6}=d^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([20, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2188484160, 3702242801, 101, 11292612242, 162, 5772869123, 19855960804, 7598283624, 2107461044, 51425464, 284, 7905398405, 2307297625, 879943725, 841986065, 10345352646, 1052940026, 2314995526, 814094886, 1066263326, 449004046, 406, 6474624007, 14838712347, 1970484527, 2380919107, 1158729687, 15358057928, 12897606268, 4387504368, 452913188, 675663208, 399106548, 133074488, 118299568, 528, 29763196809, 7208904029, 2244355249, 4409251269, 1102392089, 32425013290, 1347949710, 1673321810, 708745030, 735387930, 85673410, 101031630, 33685250, 22125370, 650, 24970728971, 24393288991, 4575605811, 5158615751, 1578666331, 128551811, 41042626572, 20012728352, 6917788852, 4299272712, 674012, 18892, 3332, 54757799053, 6252187233, 1164159413, 7020397513, 934906653, 7849093, 34530893, 6933, 42209337614, 17095276834, 583459254, 5171968874, 686275294, 327700934, 36759774, 7671814, 52852116495, 9950615075, 8085427255, 2275706955, 1047728735, 10629255, 334255, 55895, 33729751696, 12310078116, 12888744536, 738586156, 1360994256, 4655416, 42885056, 11069256, 65393809937, 29467946917, 8126697657, 1816940237, 1518238177, 28754057, 38033457, 12590857, 42897087378, 14296475558, 4629339418, 8394321678, 2856224498, 271443258, 56794978, 1664618, 22902470419, 26832393639, 19646726459, 6601406479, 2471913699, 60576139, 24657779]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.2, G.5, G.7, G.9, G.11, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l", "m", "n"]);
gap:G := PcGroupCode(676860157422462144300212846664638764273524473249182863600823086346275225954000529049004917745890259849844667984663953350745526159884869658085904591557664224917546084639404225513676765806690307991652748679003611012551280576459587168906056961572132566267314714303045136566469515741996215870145231840026609020141542573912291855022174255099785650244810312321875150845876335595319124082770276931959653017635602814527206898945645700910358695846208567352895402000018722103026422840985117032922280484755743663109084713057214985647841077478729230458617680587498275788785855266008479027758004125557316139637198618806511758763869590961277214878683960922995163301227239841359318849742152862131199090513771247018421330933851076696543997213723702300827865797903953392576838261980377344407473445521437602011363979310180265352418374895291201603929164730744178920468054541713156937004318377115020157656822143148475346265405301543952044442559160100831457903544321793042549806723783316062020622935223094820968294893734462704232144602141816264279467425950653054050945291775,204073344); a := G.1; b := G.2; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(676860157422462144300212846664638764273524473249182863600823086346275225954000529049004917745890259849844667984663953350745526159884869658085904591557664224917546084639404225513676765806690307991652748679003611012551280576459587168906056961572132566267314714303045136566469515741996215870145231840026609020141542573912291855022174255099785650244810312321875150845876335595319124082770276931959653017635602814527206898945645700910358695846208567352895402000018722103026422840985117032922280484755743663109084713057214985647841077478729230458617680587498275788785855266008479027758004125557316139637198618806511758763869590961277214878683960922995163301227239841359318849742152862131199090513771247018421330933851076696543997213723702300827865797903953392576838261980377344407473445521437602011363979310180265352418374895291201603929164730744178920468054541713156937004318377115020157656822143148475346265405301543952044442559160100831457903544321793042549806723783316062020622935223094820968294893734462704232144602141816264279467425950653054050945291775,204073344)'); a = G.1; b = G.2; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(676860157422462144300212846664638764273524473249182863600823086346275225954000529049004917745890259849844667984663953350745526159884869658085904591557664224917546084639404225513676765806690307991652748679003611012551280576459587168906056961572132566267314714303045136566469515741996215870145231840026609020141542573912291855022174255099785650244810312321875150845876335595319124082770276931959653017635602814527206898945645700910358695846208567352895402000018722103026422840985117032922280484755743663109084713057214985647841077478729230458617680587498275788785855266008479027758004125557316139637198618806511758763869590961277214878683960922995163301227239841359318849742152862131199090513771247018421330933851076696543997213723702300827865797903953392576838261980377344407473445521437602011363979310180265352418374895291201603929164730744178920468054541713156937004318377115020157656822143148475346265405301543952044442559160100831457903544321793042549806723783316062020622935223094820968294893734462704232144602141816264279467425950653054050945291775,204073344)'); a = G.1; b = G.2; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20;
|
| Permutation group: | Degree $36$
$\langle(1,36)(2,34)(3,35)(4,28,8,32,6,30,7,31,5,29,9,33)(10,22,11,24,12,23)(13,26) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,36)(2,34)(3,35)(4,28,8,32,6,30,7,31,5,29,9,33)(10,22,11,24,12,23)(13,26)(14,25)(15,27)(17,18)(20,21), (1,6,2,4,3,5)(7,34)(8,35)(9,36)(10,33,12,32,11,31)(13,28,15,29,14,30)(16,25,18,27,17,26)(19,24,21,23,20,22) >;
gap:G := Group( (1,36)(2,34)(3,35)(4,28,8,32,6,30,7,31,5,29,9,33)(10,22,11,24,12,23)(13,26)(14,25)(15,27)(17,18)(20,21), (1,6,2,4,3,5)(7,34)(8,35)(9,36)(10,33,12,32,11,31)(13,28,15,29,14,30)(16,25,18,27,17,26)(19,24,21,23,20,22) );
sage:G = PermutationGroup(['(1,36)(2,34)(3,35)(4,28,8,32,6,30,7,31,5,29,9,33)(10,22,11,24,12,23)(13,26)(14,25)(15,27)(17,18)(20,21)', '(1,6,2,4,3,5)(7,34)(8,35)(9,36)(10,33,12,32,11,31)(13,28,15,29,14,30)(16,25,18,27,17,26)(19,24,21,23,20,22)'])
|
| Transitive group: |
36T82977 |
36T82994 |
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_3^{12}.C_2^5)$ . $D_6$ |
$C_3^8$ . $(C_6^4:D_{12})$ |
$(C_3^{12}.C_2^4)$ . $D_{12}$ |
$C_3^{12}$ . $(C_2^4:D_{12})$ |
all 26 |
Elements of the group are displayed as permutations of degree 36.
The $7923 \times 7923$ character table is not available for this group.
The $7822 \times 7822$ rational character table is not available for this group.