Properties

Label 204073344.ou
Order \( 2^{7} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{18} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \cdot 3^{5} \)
Perm deg. not computed
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,23,11,34,27,14)(2,24,10,35,25,13)(3,22,12,36,26,15)(4,31,20,7,29,17,5,33,21,9,30,16,6,32,19,8,28,18), (1,9,34,4,3,7,36,6,2,8,35,5)(10,33,15,30)(11,31,13,29)(12,32,14,28)(16,23,18,24)(17,22)(19,26)(20,27,21,25) >;
 
Copy content gap:G := Group( (1,23,11,34,27,14)(2,24,10,35,25,13)(3,22,12,36,26,15)(4,31,20,7,29,17,5,33,21,9,30,16,6,32,19,8,28,18), (1,9,34,4,3,7,36,6,2,8,35,5)(10,33,15,30)(11,31,13,29)(12,32,14,28)(16,23,18,24)(17,22)(19,26)(20,27,21,25) );
 
Copy content sage:G = PermutationGroup(['(1,23,11,34,27,14)(2,24,10,35,25,13)(3,22,12,36,26,15)(4,31,20,7,29,17,5,33,21,9,30,16,6,32,19,8,28,18)', '(1,9,34,4,3,7,36,6,2,8,35,5)(10,33,15,30)(11,31,13,29)(12,32,14,28)(16,23,18,24)(17,22)(19,26)(20,27,21,25)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(30639763228382971989236756756496165680078338279050011444754898106788777211275258520417650388402908700672798374443656475403266250230375065201557851005826190483221416364958583864742272533951314920673284459460409031829589375779485707753774412716997321062894512180952847439232136429540052023068332359604735464539159740504186225192726812447729762533380398127741077461871232632196935013767938980443052162362556337945898743155869134838404028700749701607761742102913812950345408490419260202653890972169134963475276110266804750456067591594283568652711810314827268363164694480770677380673805209238652815506535660989766543869425300271837178781189616208910369597516834871831049620766997055792344412210442379141987828665289409302145575564317571228716942438375671856504451824272571039022057360435845133723951161553613090045167173542404005152681899519067156518088861044893677081165448325623466521513892284865696326243213353678721984303207799252008548900187823575620690893552908561781198978398162605340307544069103678262777159040497770980273205982488006229175494071807,204073344)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20;
 

Group information

Description:$C_3^8.(C_6^3:S_3.S_4)$
Order: \(204073344\)\(\medspace = 2^{7} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(1586874322944\)\(\medspace = 2^{12} \cdot 3^{18} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial or rational has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Statistics about orders of elements in this group have not been computed.

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid c^{6}=d^{6}=e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([20, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 40, 3422062101, 7641765842, 1930104862, 162, 3683886083, 2156418583, 46033983, 3630631204, 9900409224, 4737706244, 2471107264, 284, 9134663045, 1153342105, 3176763885, 2746851905, 23650932486, 8994394106, 726627766, 3398596806, 4174046, 552848206, 406, 23422110727, 3655388187, 8155136687, 51920707, 15750979208, 16222680028, 7546130688, 1361151068, 846113128, 20298708, 160614488, 28558048, 528, 29694768009, 1922572829, 3913593649, 1068986469, 263263329, 19154752330, 12022369950, 3220224530, 2648133910, 867097530, 837991550, 161861170, 2337890, 12969850, 650, 32752120331, 23214781471, 9815921331, 6096713831, 1122647131, 31184811, 41414343372, 8087072, 4671881812, 2618854752, 342295332, 992332, 9630092, 11406138253, 16085744673, 3493129973, 4917459193, 2276346333, 604933, 55994573, 1009893, 22999507214, 4749580834, 14129121654, 3275715674, 78148894, 221292134, 16999374, 5758414, 62186065935, 5543976995, 12781808695, 2778704715, 36080735, 2972295, 17925295, 1200215, 68162911696, 14128680996, 11699196056, 122230756, 2776032096, 256599496, 59168336, 6105936, 69880942097, 7983774757, 12562750137, 5686057517, 179159137, 20139977, 24909297, 708697, 2644325778, 10265253158, 12895456618, 637861998, 453574178, 379948458, 10588498, 10458578, 2069721619, 30139776039, 7208904059, 7482273679, 33998579, 6480219]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l", "m", "n"]);
 
Copy content gap:G := PcGroupCode(30639763228382971989236756756496165680078338279050011444754898106788777211275258520417650388402908700672798374443656475403266250230375065201557851005826190483221416364958583864742272533951314920673284459460409031829589375779485707753774412716997321062894512180952847439232136429540052023068332359604735464539159740504186225192726812447729762533380398127741077461871232632196935013767938980443052162362556337945898743155869134838404028700749701607761742102913812950345408490419260202653890972169134963475276110266804750456067591594283568652711810314827268363164694480770677380673805209238652815506535660989766543869425300271837178781189616208910369597516834871831049620766997055792344412210442379141987828665289409302145575564317571228716942438375671856504451824272571039022057360435845133723951161553613090045167173542404005152681899519067156518088861044893677081165448325623466521513892284865696326243213353678721984303207799252008548900187823575620690893552908561781198978398162605340307544069103678262777159040497770980273205982488006229175494071807,204073344); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(30639763228382971989236756756496165680078338279050011444754898106788777211275258520417650388402908700672798374443656475403266250230375065201557851005826190483221416364958583864742272533951314920673284459460409031829589375779485707753774412716997321062894512180952847439232136429540052023068332359604735464539159740504186225192726812447729762533380398127741077461871232632196935013767938980443052162362556337945898743155869134838404028700749701607761742102913812950345408490419260202653890972169134963475276110266804750456067591594283568652711810314827268363164694480770677380673805209238652815506535660989766543869425300271837178781189616208910369597516834871831049620766997055792344412210442379141987828665289409302145575564317571228716942438375671856504451824272571039022057360435845133723951161553613090045167173542404005152681899519067156518088861044893677081165448325623466521513892284865696326243213353678721984303207799252008548900187823575620690893552908561781198978398162605340307544069103678262777159040497770980273205982488006229175494071807,204073344)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(30639763228382971989236756756496165680078338279050011444754898106788777211275258520417650388402908700672798374443656475403266250230375065201557851005826190483221416364958583864742272533951314920673284459460409031829589375779485707753774412716997321062894512180952847439232136429540052023068332359604735464539159740504186225192726812447729762533380398127741077461871232632196935013767938980443052162362556337945898743155869134838404028700749701607761742102913812950345408490419260202653890972169134963475276110266804750456067591594283568652711810314827268363164694480770677380673805209238652815506535660989766543869425300271837178781189616208910369597516834871831049620766997055792344412210442379141987828665289409302145575564317571228716942438375671856504451824272571039022057360435845133723951161553613090045167173542404005152681899519067156518088861044893677081165448325623466521513892284865696326243213353678721984303207799252008548900187823575620690893552908561781198978398162605340307544069103678262777159040497770980273205982488006229175494071807,204073344)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20;
 
Permutation group:Degree $36$ $\langle(1,23,11,34,27,14)(2,24,10,35,25,13)(3,22,12,36,26,15)(4,31,20,7,29,17,5,33,21,9,30,16,6,32,19,8,28,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,23,11,34,27,14)(2,24,10,35,25,13)(3,22,12,36,26,15)(4,31,20,7,29,17,5,33,21,9,30,16,6,32,19,8,28,18), (1,9,34,4,3,7,36,6,2,8,35,5)(10,33,15,30)(11,31,13,29)(12,32,14,28)(16,23,18,24)(17,22)(19,26)(20,27,21,25) >;
 
Copy content gap:G := Group( (1,23,11,34,27,14)(2,24,10,35,25,13)(3,22,12,36,26,15)(4,31,20,7,29,17,5,33,21,9,30,16,6,32,19,8,28,18), (1,9,34,4,3,7,36,6,2,8,35,5)(10,33,15,30)(11,31,13,29)(12,32,14,28)(16,23,18,24)(17,22)(19,26)(20,27,21,25) );
 
Copy content sage:G = PermutationGroup(['(1,23,11,34,27,14)(2,24,10,35,25,13)(3,22,12,36,26,15)(4,31,20,7,29,17,5,33,21,9,30,16,6,32,19,8,28,18)', '(1,9,34,4,3,7,36,6,2,8,35,5)(10,33,15,30)(11,31,13,29)(12,32,14,28)(16,23,18,24)(17,22)(19,26)(20,27,21,25)'])
 
Transitive group: 36T82964 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^6)$ . $S_3$ $(C_3^{12}.C_2^4)$ . $S_4$ (3) $C_3^{12}$ . $(C_2^4.S_4)$ $(C_3^{12}.C_2^5)$ . $D_6$ all 41

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{6}^{4}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 70 normal subgroups (35 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_3^4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 10 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

The character tables for this group have not been computed.