| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n \mid c^{6}=d^{6}=e^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([20, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 40, 3422062101, 7641765842, 1930104862, 162, 3683886083, 2156418583, 46033983, 3630631204, 9900409224, 4737706244, 2471107264, 284, 9134663045, 1153342105, 3176763885, 2746851905, 23650932486, 8994394106, 726627766, 3398596806, 4174046, 552848206, 406, 23422110727, 3655388187, 8155136687, 51920707, 15750979208, 16222680028, 7546130688, 1361151068, 846113128, 20298708, 160614488, 28558048, 528, 29694768009, 1922572829, 3913593649, 1068986469, 263263329, 19154752330, 12022369950, 3220224530, 2648133910, 867097530, 837991550, 161861170, 2337890, 12969850, 650, 32752120331, 23214781471, 9815921331, 6096713831, 1122647131, 31184811, 41414343372, 8087072, 4671881812, 2618854752, 342295332, 992332, 9630092, 11406138253, 16085744673, 3493129973, 4917459193, 2276346333, 604933, 55994573, 1009893, 22999507214, 4749580834, 14129121654, 3275715674, 78148894, 221292134, 16999374, 5758414, 62186065935, 5543976995, 12781808695, 2778704715, 36080735, 2972295, 17925295, 1200215, 68162911696, 14128680996, 11699196056, 122230756, 2776032096, 256599496, 59168336, 6105936, 69880942097, 7983774757, 12562750137, 5686057517, 179159137, 20139977, 24909297, 708697, 2644325778, 10265253158, 12895456618, 637861998, 453574178, 379948458, 10588498, 10458578, 2069721619, 30139776039, 7208904059, 7482273679, 33998579, 6480219]); a,b,c,d,e,f,g,h,i,j,k,l,m,n := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i", "j", "k", "l", "m", "n"]);
gap:G := PcGroupCode(30639763228382971989236756756496165680078338279050011444754898106788777211275258520417650388402908700672798374443656475403266250230375065201557851005826190483221416364958583864742272533951314920673284459460409031829589375779485707753774412716997321062894512180952847439232136429540052023068332359604735464539159740504186225192726812447729762533380398127741077461871232632196935013767938980443052162362556337945898743155869134838404028700749701607761742102913812950345408490419260202653890972169134963475276110266804750456067591594283568652711810314827268363164694480770677380673805209238652815506535660989766543869425300271837178781189616208910369597516834871831049620766997055792344412210442379141987828665289409302145575564317571228716942438375671856504451824272571039022057360435845133723951161553613090045167173542404005152681899519067156518088861044893677081165448325623466521513892284865696326243213353678721984303207799252008548900187823575620690893552908561781198978398162605340307544069103678262777159040497770980273205982488006229175494071807,204073344); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(30639763228382971989236756756496165680078338279050011444754898106788777211275258520417650388402908700672798374443656475403266250230375065201557851005826190483221416364958583864742272533951314920673284459460409031829589375779485707753774412716997321062894512180952847439232136429540052023068332359604735464539159740504186225192726812447729762533380398127741077461871232632196935013767938980443052162362556337945898743155869134838404028700749701607761742102913812950345408490419260202653890972169134963475276110266804750456067591594283568652711810314827268363164694480770677380673805209238652815506535660989766543869425300271837178781189616208910369597516834871831049620766997055792344412210442379141987828665289409302145575564317571228716942438375671856504451824272571039022057360435845133723951161553613090045167173542404005152681899519067156518088861044893677081165448325623466521513892284865696326243213353678721984303207799252008548900187823575620690893552908561781198978398162605340307544069103678262777159040497770980273205982488006229175494071807,204073344)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(30639763228382971989236756756496165680078338279050011444754898106788777211275258520417650388402908700672798374443656475403266250230375065201557851005826190483221416364958583864742272533951314920673284459460409031829589375779485707753774412716997321062894512180952847439232136429540052023068332359604735464539159740504186225192726812447729762533380398127741077461871232632196935013767938980443052162362556337945898743155869134838404028700749701607761742102913812950345408490419260202653890972169134963475276110266804750456067591594283568652711810314827268363164694480770677380673805209238652815506535660989766543869425300271837178781189616208910369597516834871831049620766997055792344412210442379141987828665289409302145575564317571228716942438375671856504451824272571039022057360435845133723951161553613090045167173542404005152681899519067156518088861044893677081165448325623466521513892284865696326243213353678721984303207799252008548900187823575620690893552908561781198978398162605340307544069103678262777159040497770980273205982488006229175494071807,204073344)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20;
|
| Permutation group: | Degree $36$
$\langle(1,23,11,34,27,14)(2,24,10,35,25,13)(3,22,12,36,26,15)(4,31,20,7,29,17,5,33,21,9,30,16,6,32,19,8,28,18) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,23,11,34,27,14)(2,24,10,35,25,13)(3,22,12,36,26,15)(4,31,20,7,29,17,5,33,21,9,30,16,6,32,19,8,28,18), (1,9,34,4,3,7,36,6,2,8,35,5)(10,33,15,30)(11,31,13,29)(12,32,14,28)(16,23,18,24)(17,22)(19,26)(20,27,21,25) >;
gap:G := Group( (1,23,11,34,27,14)(2,24,10,35,25,13)(3,22,12,36,26,15)(4,31,20,7,29,17,5,33,21,9,30,16,6,32,19,8,28,18), (1,9,34,4,3,7,36,6,2,8,35,5)(10,33,15,30)(11,31,13,29)(12,32,14,28)(16,23,18,24)(17,22)(19,26)(20,27,21,25) );
sage:G = PermutationGroup(['(1,23,11,34,27,14)(2,24,10,35,25,13)(3,22,12,36,26,15)(4,31,20,7,29,17,5,33,21,9,30,16,6,32,19,8,28,18)', '(1,9,34,4,3,7,36,6,2,8,35,5)(10,33,15,30)(11,31,13,29)(12,32,14,28)(16,23,18,24)(17,22)(19,26)(20,27,21,25)'])
|
| Transitive group: |
36T82964 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_3^{12}.C_2^6)$ . $S_3$ |
$(C_3^{12}.C_2^4)$ . $S_4$ (3) |
$C_3^{12}$ . $(C_2^4.S_4)$ |
$(C_3^{12}.C_2^5)$ . $D_6$ |
all 41 |
Elements of the group are displayed as permutations of degree 36.
The character tables for this group have not been computed.