Properties

Label 2038431744.e
Order \( 2^{23} \cdot 3^{5} \)
Exponent \( 2^{4} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{25} \cdot 3^{5} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,28,13,24,9,30,6,21,11,19,3,32)(2,27,14,23,10,29,5,22,12,20,4,31)(7,26,17,35,8,25,18,36)(15,33)(16,34), (1,11,9,2,12,10)(3,8,6,16,14,17)(4,7,5,15,13,18)(19,31,20,32)(21,28,22,27)(23,30,24,29)(35,36), (1,22,13,20,17,30,5,31,2,21,14,19,18,29,6,32)(3,26,4,25)(7,36,10,28,11,33,15,23,8,35,9,27,12,34,16,24) >;
 
Copy content gap:G := Group( (1,28,13,24,9,30,6,21,11,19,3,32)(2,27,14,23,10,29,5,22,12,20,4,31)(7,26,17,35,8,25,18,36)(15,33)(16,34), (1,11,9,2,12,10)(3,8,6,16,14,17)(4,7,5,15,13,18)(19,31,20,32)(21,28,22,27)(23,30,24,29)(35,36), (1,22,13,20,17,30,5,31,2,21,14,19,18,29,6,32)(3,26,4,25)(7,36,10,28,11,33,15,23,8,35,9,27,12,34,16,24) );
 
Copy content sage:G = PermutationGroup(['(1,28,13,24,9,30,6,21,11,19,3,32)(2,27,14,23,10,29,5,22,12,20,4,31)(7,26,17,35,8,25,18,36)(15,33)(16,34)', '(1,11,9,2,12,10)(3,8,6,16,14,17)(4,7,5,15,13,18)(19,31,20,32)(21,28,22,27)(23,30,24,29)(35,36)', '(1,22,13,20,17,30,5,31,2,21,14,19,18,29,6,32)(3,26,4,25)(7,36,10,28,11,33,15,23,8,35,9,27,12,34,16,24)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1436536338918071575941759404868991508162235594784661061699787551550564645127906932047707328280938391914841978634004218583587417498678042979222430327324243236286524933730806011838632371212287853903335812764810543622493470158854156668853573576734619064519600176657869081775174375125826600418719764826303137882391179655627184392889112527957350286208477798642108635110912814554288596274265975218795262285501273171617642893777498183986161962186946022476709001245500769559265982923897325529953467222717630227546707872866149899543053055367280426670779394350345981902475731356207291097901763978883546166777415257739115556634273228618061324607209484692227989697778910031503629622775893012307512186470964221719758120750041678024277369791031413649961941329103541280311951413736177139010357071469175718317453751774932653506121357760220367427344930865324635073145958051559141312376234748678964607485803704934971317801633591062814873343135568360199635400023396679080120003837672011811816424881389315053490074704425540212224538559557425712878651361226060925717285121740225812353540702418715302481241425747673463538820890943929036851939916845996154422499424007921054826474762703639374156552669375291213493626778468297332844268560636536401375787663311074970520706387763812680135318585333378693115693558241450767980051844416791596179242183073452204598227153658041210731739916318652677352930036704425717486134251149777516297381553917180282322658926506299128489896174997370716947578183884704387924393639950160498460505394334789085191547744594844254692976240879406867381283184670910048907181020951988531789842226584348496823705437255805146104101508861301536715614039677339690435896952559970748658491666258065654675794740082688035113349116717978867731279516124683685970371326841201486294214439800670498174130438265699054287865546917962256214272709923317138810503410875518580737589953583952255848213652942872593575373032799224312529039277686675164363768175625649819216279955017713817396719594352152635465993810441691834572285781597931716856044544970389854100729766720233118492467065292455304826074129497440847286969722127021357438060976669572669499573652307164018993287474207380116181414499708181972075675923239642699144583796292199169864618207271164164544483772090932587925263184097257847773727425644812228412221177660632711138090238975772044954160799735199511278910692781804309310779792127515219423110178500578588712896145272435944243283318320794331512999805117554995149963436646739434864213980741098461945466667617395464556480870391663285870154602404727399802294098229986585329814089769380272737895215330539447386303773133487836685932542925966656360796385922831840519865487242156790413869781369439153576879202688308018810043489598684376655683245685190956932340702945915051904485206073318218799040424200095403738702006511514843140699233861883221189363323792520666462268514370614331652978087470477629173318799570317778944,2038431744)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22; q = G.23; r = G.24; s = G.25; t = G.26; u = G.27; v = G.28;
 

Group information

Description:$C_2^{16}.C_3^4.(C_4\times Q_8).D_6$
Order: \(2038431744\)\(\medspace = 2^{23} \cdot 3^{5} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(8153726976\)\(\medspace = 2^{25} \cdot 3^{5} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 23, $C_3$ x 5
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$6$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16 24
Elements 1 815103 1756160 89690112 249246720 525533184 534380544 382205952 254803968 2038431744
Conjugacy classes   1 182 6 306 312 69 140 22 12 1050
Divisions 1 182 6 304 280 50 122 11 6 962
Autjugacy classes 1 141 6 189 202 48 72 12 6 677

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v \mid g^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([28, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 20329924608, 29917045425, 141, 55604052674, 29294887162, 61024560579, 14241210175, 1167299339, 311, 283483525924, 109731553712, 42299712900, 502064756, 306888511109, 10034273121, 57272089453, 27045406841, 12973205061, 4815720817, 65868324486, 83952313906, 1848125222, 14837185978, 8369119366, 241838666, 566, 264221841415, 110089964579, 7144091199, 4206558811, 2754180471, 8227797011, 915328715, 144563844104, 211144921380, 5022017344, 17809545692, 10906906872, 7971036340, 4597931696, 2359465116, 559044088, 372445301769, 242712207397, 63351993665, 18154420573, 7333092601, 2531536149, 3381706897, 2925728605, 1435571993, 821, 232685730826, 312762852902, 113408773698, 48174620126, 20344824314, 11588825398, 1019525762, 351674606, 979161186, 464841474059, 254651636775, 166887060547, 39281303135, 3746760315, 4693076119, 4169391923, 3482843823, 1125009883, 127772327, 138748467, 991, 56109301260, 106810738984, 116228915780, 48746204512, 27676486780, 8284177144, 3640757300, 1525908592, 1495677692, 182844744, 101388124, 219377249293, 144358534697, 156782739525, 57959740257, 31941665405, 7333903065, 3128512981, 3952150481, 939012717, 512279977, 176061605, 93099537, 45622093, 1161, 240954255374, 296659238442, 26928599110, 62258810978, 2091640446, 8495283034, 1052251382, 534885330, 180805198, 15090026, 77853174, 640402, 5022710, 48781910031, 88735481899, 118457966663, 1783627875, 31592042623, 6293790875, 5108302263, 3948424915, 1315077359, 658167819, 329035687, 109694915, 54839583, 320866527760, 111574278188, 121508771400, 10541518948, 32910167936, 10123297788, 5061649000, 1356246096, 685628764, 342917360, 114271740, 57153196, 161782354961, 255212923437, 36384961609, 42593693285, 38276582529, 19854435037, 2194716569, 3808389525, 979939537, 749093453, 319625001, 147601765, 66343889, 1373277, 3042553, 390914076690, 10457911342, 73586120934, 5846722690, 3452875934, 4714609722, 245452246, 41828238, 20454634, 651494, 6282210, 1162270, 568586, 96427376659, 115691950127, 197505423435, 19910016103, 37899187331, 4333069599, 4283435707, 5190272855, 1084467123, 784486351, 391275659, 164536167, 75595315, 3246143, 1414971, 564917359124, 558221497392, 193407782476, 64665361256, 47871855492, 17540863360, 11554955180, 1208608344, 1663932052, 980565536, 488250804, 133369312, 70516256, 3747120, 1813804, 293074467861, 311855588401, 97850446925, 14165851497, 33606752389, 15749883233, 5340890205, 5670979993, 1224847253, 908639697, 405554989, 136027913, 59742501, 1456609, 3304637, 256078222870, 293615159090, 22935467598, 105182840554, 47493444230, 24928874370, 4388476366, 4756105082, 1200398214, 884562610, 360696974, 154568058, 76704622, 3895298, 2685894, 179591344151, 627441002547, 264638804047, 109687495787, 40337160327, 15873290659, 7316556095, 2510839515, 1804094455, 1130516627, 562355439, 128012299, 67102919, 4524291, 2209951, 437722790424, 79733203252, 179712691280, 71872012908, 7159622536, 25370755364, 1447916592, 2245320220, 198752676, 217085704, 37964132, 15126660, 4931188, 42416, 93473243161, 188849816117, 217334347857, 105761440621, 7740375689, 4704545829, 14758982977, 4910383517, 3692576409, 32629237, 178201601, 26719389, 26778385, 2123237, 2223729, 165840804890, 181299057462, 212219481682, 13858169582, 44767925130, 20603056486, 2707284578, 694661406, 392155594, 919601702, 374478858, 142435270, 103114982, 18516342, 6659266, 1060984866843, 236450285623, 39163170899, 115214883951, 24312379531, 4606890791, 11779427715, 7278066655, 78491195, 40304151, 646471027, 64717967, 99899211, 21384775, 14357027]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v := Explode([G.1, G.2, G.4, G.6, G.7, G.9, G.10, G.12, G.14, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24, G.25, G.26, G.27, G.28]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "e", "e2", "f", "g", "g2", "h", "h2", "i", "i2", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v"]);
 
Copy content gap:G := PcGroupCode(1436536338918071575941759404868991508162235594784661061699787551550564645127906932047707328280938391914841978634004218583587417498678042979222430327324243236286524933730806011838632371212287853903335812764810543622493470158854156668853573576734619064519600176657869081775174375125826600418719764826303137882391179655627184392889112527957350286208477798642108635110912814554288596274265975218795262285501273171617642893777498183986161962186946022476709001245500769559265982923897325529953467222717630227546707872866149899543053055367280426670779394350345981902475731356207291097901763978883546166777415257739115556634273228618061324607209484692227989697778910031503629622775893012307512186470964221719758120750041678024277369791031413649961941329103541280311951413736177139010357071469175718317453751774932653506121357760220367427344930865324635073145958051559141312376234748678964607485803704934971317801633591062814873343135568360199635400023396679080120003837672011811816424881389315053490074704425540212224538559557425712878651361226060925717285121740225812353540702418715302481241425747673463538820890943929036851939916845996154422499424007921054826474762703639374156552669375291213493626778468297332844268560636536401375787663311074970520706387763812680135318585333378693115693558241450767980051844416791596179242183073452204598227153658041210731739916318652677352930036704425717486134251149777516297381553917180282322658926506299128489896174997370716947578183884704387924393639950160498460505394334789085191547744594844254692976240879406867381283184670910048907181020951988531789842226584348496823705437255805146104101508861301536715614039677339690435896952559970748658491666258065654675794740082688035113349116717978867731279516124683685970371326841201486294214439800670498174130438265699054287865546917962256214272709923317138810503410875518580737589953583952255848213652942872593575373032799224312529039277686675164363768175625649819216279955017713817396719594352152635465993810441691834572285781597931716856044544970389854100729766720233118492467065292455304826074129497440847286969722127021357438060976669572669499573652307164018993287474207380116181414499708181972075675923239642699144583796292199169864618207271164164544483772090932587925263184097257847773727425644812228412221177660632711138090238975772044954160799735199511278910692781804309310779792127515219423110178500578588712896145272435944243283318320794331512999805117554995149963436646739434864213980741098461945466667617395464556480870391663285870154602404727399802294098229986585329814089769380272737895215330539447386303773133487836685932542925966656360796385922831840519865487242156790413869781369439153576879202688308018810043489598684376655683245685190956932340702945915051904485206073318218799040424200095403738702006511514843140699233861883221189363323792520666462268514370614331652978087470477629173318799570317778944,2038431744); a := G.1; b := G.2; c := G.4; d := G.6; e := G.7; f := G.9; g := G.10; h := G.12; i := G.14; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.21; p := G.22; q := G.23; r := G.24; s := G.25; t := G.26; u := G.27; v := G.28;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1436536338918071575941759404868991508162235594784661061699787551550564645127906932047707328280938391914841978634004218583587417498678042979222430327324243236286524933730806011838632371212287853903335812764810543622493470158854156668853573576734619064519600176657869081775174375125826600418719764826303137882391179655627184392889112527957350286208477798642108635110912814554288596274265975218795262285501273171617642893777498183986161962186946022476709001245500769559265982923897325529953467222717630227546707872866149899543053055367280426670779394350345981902475731356207291097901763978883546166777415257739115556634273228618061324607209484692227989697778910031503629622775893012307512186470964221719758120750041678024277369791031413649961941329103541280311951413736177139010357071469175718317453751774932653506121357760220367427344930865324635073145958051559141312376234748678964607485803704934971317801633591062814873343135568360199635400023396679080120003837672011811816424881389315053490074704425540212224538559557425712878651361226060925717285121740225812353540702418715302481241425747673463538820890943929036851939916845996154422499424007921054826474762703639374156552669375291213493626778468297332844268560636536401375787663311074970520706387763812680135318585333378693115693558241450767980051844416791596179242183073452204598227153658041210731739916318652677352930036704425717486134251149777516297381553917180282322658926506299128489896174997370716947578183884704387924393639950160498460505394334789085191547744594844254692976240879406867381283184670910048907181020951988531789842226584348496823705437255805146104101508861301536715614039677339690435896952559970748658491666258065654675794740082688035113349116717978867731279516124683685970371326841201486294214439800670498174130438265699054287865546917962256214272709923317138810503410875518580737589953583952255848213652942872593575373032799224312529039277686675164363768175625649819216279955017713817396719594352152635465993810441691834572285781597931716856044544970389854100729766720233118492467065292455304826074129497440847286969722127021357438060976669572669499573652307164018993287474207380116181414499708181972075675923239642699144583796292199169864618207271164164544483772090932587925263184097257847773727425644812228412221177660632711138090238975772044954160799735199511278910692781804309310779792127515219423110178500578588712896145272435944243283318320794331512999805117554995149963436646739434864213980741098461945466667617395464556480870391663285870154602404727399802294098229986585329814089769380272737895215330539447386303773133487836685932542925966656360796385922831840519865487242156790413869781369439153576879202688308018810043489598684376655683245685190956932340702945915051904485206073318218799040424200095403738702006511514843140699233861883221189363323792520666462268514370614331652978087470477629173318799570317778944,2038431744)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22; q = G.23; r = G.24; s = G.25; t = G.26; u = G.27; v = G.28;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1436536338918071575941759404868991508162235594784661061699787551550564645127906932047707328280938391914841978634004218583587417498678042979222430327324243236286524933730806011838632371212287853903335812764810543622493470158854156668853573576734619064519600176657869081775174375125826600418719764826303137882391179655627184392889112527957350286208477798642108635110912814554288596274265975218795262285501273171617642893777498183986161962186946022476709001245500769559265982923897325529953467222717630227546707872866149899543053055367280426670779394350345981902475731356207291097901763978883546166777415257739115556634273228618061324607209484692227989697778910031503629622775893012307512186470964221719758120750041678024277369791031413649961941329103541280311951413736177139010357071469175718317453751774932653506121357760220367427344930865324635073145958051559141312376234748678964607485803704934971317801633591062814873343135568360199635400023396679080120003837672011811816424881389315053490074704425540212224538559557425712878651361226060925717285121740225812353540702418715302481241425747673463538820890943929036851939916845996154422499424007921054826474762703639374156552669375291213493626778468297332844268560636536401375787663311074970520706387763812680135318585333378693115693558241450767980051844416791596179242183073452204598227153658041210731739916318652677352930036704425717486134251149777516297381553917180282322658926506299128489896174997370716947578183884704387924393639950160498460505394334789085191547744594844254692976240879406867381283184670910048907181020951988531789842226584348496823705437255805146104101508861301536715614039677339690435896952559970748658491666258065654675794740082688035113349116717978867731279516124683685970371326841201486294214439800670498174130438265699054287865546917962256214272709923317138810503410875518580737589953583952255848213652942872593575373032799224312529039277686675164363768175625649819216279955017713817396719594352152635465993810441691834572285781597931716856044544970389854100729766720233118492467065292455304826074129497440847286969722127021357438060976669572669499573652307164018993287474207380116181414499708181972075675923239642699144583796292199169864618207271164164544483772090932587925263184097257847773727425644812228412221177660632711138090238975772044954160799735199511278910692781804309310779792127515219423110178500578588712896145272435944243283318320794331512999805117554995149963436646739434864213980741098461945466667617395464556480870391663285870154602404727399802294098229986585329814089769380272737895215330539447386303773133487836685932542925966656360796385922831840519865487242156790413869781369439153576879202688308018810043489598684376655683245685190956932340702945915051904485206073318218799040424200095403738702006511514843140699233861883221189363323792520666462268514370614331652978087470477629173318799570317778944,2038431744)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22; q = G.23; r = G.24; s = G.25; t = G.26; u = G.27; v = G.28;
 
Permutation group:Degree $36$ $\langle(1,28,13,24,9,30,6,21,11,19,3,32)(2,27,14,23,10,29,5,22,12,20,4,31)(7,26,17,35,8,25,18,36) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,28,13,24,9,30,6,21,11,19,3,32)(2,27,14,23,10,29,5,22,12,20,4,31)(7,26,17,35,8,25,18,36)(15,33)(16,34), (1,11,9,2,12,10)(3,8,6,16,14,17)(4,7,5,15,13,18)(19,31,20,32)(21,28,22,27)(23,30,24,29)(35,36), (1,22,13,20,17,30,5,31,2,21,14,19,18,29,6,32)(3,26,4,25)(7,36,10,28,11,33,15,23,8,35,9,27,12,34,16,24) >;
 
Copy content gap:G := Group( (1,28,13,24,9,30,6,21,11,19,3,32)(2,27,14,23,10,29,5,22,12,20,4,31)(7,26,17,35,8,25,18,36)(15,33)(16,34), (1,11,9,2,12,10)(3,8,6,16,14,17)(4,7,5,15,13,18)(19,31,20,32)(21,28,22,27)(23,30,24,29)(35,36), (1,22,13,20,17,30,5,31,2,21,14,19,18,29,6,32)(3,26,4,25)(7,36,10,28,11,33,15,23,8,35,9,27,12,34,16,24) );
 
Copy content sage:G = PermutationGroup(['(1,28,13,24,9,30,6,21,11,19,3,32)(2,27,14,23,10,29,5,22,12,20,4,31)(7,26,17,35,8,25,18,36)(15,33)(16,34)', '(1,11,9,2,12,10)(3,8,6,16,14,17)(4,7,5,15,13,18)(19,31,20,32)(21,28,22,27)(23,30,24,29)(35,36)', '(1,22,13,20,17,30,5,31,2,21,14,19,18,29,6,32)(3,26,4,25)(7,36,10,28,11,33,15,23,8,35,9,27,12,34,16,24)'])
 
Transitive group: 36T97729 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $(C_2^{16}.C_3^4.Q_8.S_3)$ . $D_4$ (2) $C_2^{16}$ . $(C_3^4:\GL(2,3):D_4)$ $C_2^{18}$ . $(C_3^4:\GL(2,3):C_2)$ $(C_2^{16}.C_3^4.Q_8.D_{12})$ . $C_2$ all 35

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{4}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 42 normal subgroups (40 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^{11}.C_2^6.C_2.C_2^5$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4:C_3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1050 \times 1050$ character table is not available for this group.

Rational character table

The $962 \times 962$ rational character table is not available for this group.