Properties

Label 1920.235458
Order \( 2^{7} \cdot 3 \cdot 5 \)
Exponent \( 2^{3} \cdot 3 \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \cdot 5 \)
$\card{Z(G)}$ \( 2^{2} \cdot 5 \)
$\card{\Aut(G)}$ \( 2^{15} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{10} \)
Trans deg. not computed
Rank not computed

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_5 \times (C_{24}:C_2^4)$
Order: \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Automorphism group:Group of order 98304
Derived length:$2$

This group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian. Whether it is metacyclic, monomial, or rational has not been computed.

Group statistics

Order 1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120
Elements 1 127 2 64 4 62 64 508 32 8 256 32 248 256 128 128 1920
Conjugacy classes   1 23 1 12 4 11 8 92 6 4 48 4 44 32 24 16 330
Divisions data not computed
Autjugacy classes data not computed

Dimension 1 2 4 8
Irr. complex chars.   160 120 40 10 330

Constructions

Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid a^{2}=b^{2}=c^{2}=d^{2}=e^{2}=g^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Aut. group: $\Aut(C_{11}\times D_{24})$ $\Aut(C_{33}:Q_{16})$

Homology

Abelianization: $C_{2}^{4} \times C_{10} \simeq C_{2}^{5} \times C_{5}$

Subgroups

Center: $Z \simeq$ $C_2\times C_{10}$ $G/Z \simeq$ $D_4\times D_6$
Commutator: $G' \simeq$ $C_{12}$ $G/G' \simeq$ $C_2^4\times C_{10}$
Frattini: $\Phi \simeq$ $C_4$ $G/\Phi \simeq$ $C_{15}:C_2^5$
Fitting: $\operatorname{Fit} \simeq$ $C_{120}:C_2^3$ $G/\operatorname{Fit} \simeq$ $C_2$
Radical: $R \simeq$ $C_5 \times (C_{24}:C_2^4)$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2\times C_{30}$ $G/S \simeq$ $C_2^2\times D_4$
2-Sylow subgroup: $P_{2} \simeq$ $C_8:C_2^4$
3-Sylow subgroup: $P_{3} \simeq$ $C_3$
5-Sylow subgroup: $P_{5} \simeq$ $C_5$
Maximal subgroups: $M_{2,1} \simeq$ $C_{120}:C_2^3$ $G/M_{2,1} \simeq$ $C_2$
$M_{2,2} \simeq$ $C_{120}:C_2^3$ $G/M_{2,2} \simeq$ $C_2$
$M_{2,3} \simeq$ $C_{120}:C_2^3$ $G/M_{2,3} \simeq$ $C_2$ 2 normal subgroups
$M_{2,4} \simeq$ $C_{120}:C_2^3$ $G/M_{2,4} \simeq$ $C_2$ 2 normal subgroups
$M_{2,5} \simeq$ $C_{120}:C_2^3$ $G/M_{2,5} \simeq$ $C_2$ 2 normal subgroups
$M_{2,6} \simeq$ $C_{120}:C_2^3$ $G/M_{2,6} \simeq$ $C_2$ 2 normal subgroups
$M_{2,7} \simeq$ $C_{120}:C_2^3$ $G/M_{2,7} \simeq$ $C_2$ 16 normal subgroups
$M_{2,8} \simeq$ $C_{60}.C_2^4$ $G/M_{2,8} \simeq$ $C_2$
$M_{2,9} \simeq$ $C_{60}.C_2^4$ $G/M_{2,9} \simeq$ $C_2$
$M_{2,10} \simeq$ $C_{120}:C_2^3$ $G/M_{2,10} \simeq$ $C_2$
$M_{2,11} \simeq$ $C_{60}:C_2^4$ $G/M_{2,11} \simeq$ $C_2$
$M_{2,12} \simeq$ $C_{30}.C_2^5$ $G/M_{2,12} \simeq$ $C_2$
$M_{3} \simeq$ $C_5 \times (C_8:C_2^4)$ 3 subgroups in one conjugacy class
$M_{5} \simeq$ $C_{24}:C_2^4$ $G/M_{5} \simeq$ $C_5$
Maximal quotients: $m_{2,1} \simeq$ $C_2$ $G/m_{2,1} \simeq$ $C_{120}:C_2^3$ 2 normal subgroups
$m_{2,2} \simeq$ $C_2$ $G/m_{2,2} \simeq$ $C_{60}:C_2^4$
$m_{3} \simeq$ $C_3$ $G/m_{3} \simeq$ $C_5 \times (C_8:C_2^4)$
$m_{5} \simeq$ $C_5$ $G/m_{5} \simeq$ $C_{24}:C_2^4$