Properties

Label 192.973
Order \( 2^{6} \cdot 3 \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 2 \)
$\card{\mathrm{Aut}(G)}$ \( 2^{7} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $12$
Trans deg. $24$
Rank $2$

Related objects

Downloads

Learn more

Group information

Description:$A_4:\SD_{16}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism group:$\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Outer automorphisms:$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Composition factors:$C_2$ x 6, $C_3$
Derived length:$3$

This group is nonabelian and monomial (hence solvable).

Group statistics

Order 1 2 3 4 6 8 12
Elements 1 23 8 56 40 48 16 192
Conjugacy classes   1 5 1 4 3 4 1 19
Divisions 1 5 1 4 2 2 1 16
Autjugacy classes 1 5 1 4 2 2 1 16

Dimension 1 2 3 4 6 12
Irr. complex chars.   4 7 4 1 3 0 19
Irr. rational chars. 4 3 4 3 1 1 16

Minimal Presentations

Permutation degree:$12$
Transitive degree:$24$
Rank: $2$
Inequivalent generating pairs: $18$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 6 12 12
Arbitrary 5 7 7

Constructions

Presentation: ${\langle a, b, c, d, e \mid a^{2}=b^{8}=c^{3}=d^{2}=e^{2}=[a,c]=[a,d]=[a,e]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Permutation group:Degree $12$ $\langle(2,3)(5,6,8,11)(7,9,12,10), (6,9)(7,12)(10,11), (5,7,8,12)(6,10,11,9), (5,8)(6,11)(7,12)(9,10), (2,3,4), (1,2)(3,4), (1,3)(2,4)\rangle$ Copy content Toggle raw display
Matrix group:$\left\langle \left(\begin{array}{rr} 7 & 0 \\ 6 & 7 \end{array}\right), \left(\begin{array}{rr} 0 & 5 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 5 & 0 \\ 0 & 5 \end{array}\right), \left(\begin{array}{rr} 1 & 9 \\ 9 & 10 \end{array}\right), \left(\begin{array}{rr} 1 & 6 \\ 6 & 1 \end{array}\right), \left(\begin{array}{rr} 5 & 2 \\ 2 & 1 \end{array}\right), \left(\begin{array}{rr} 5 & 2 \\ 0 & 1 \end{array}\right) \right\rangle \subseteq \GL_{2}(\Z/12\Z)$
Transitive group: 24T331 32T2208 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $A_4$ $\,\rtimes\,$ $\SD_{16}$ $(A_4:Q_8)$ $\,\rtimes\,$ $C_2$ $(A_4:C_8)$ $\,\rtimes\,$ $C_2$ $C_2^2$ $\,\rtimes\,$ $(C_3:\SD_{16})$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $D_4$ . $S_4$ $C_4$ . $(C_2\times S_4)$ $(D_4\times A_4)$ . $C_2$ $(C_2\times A_4)$ . $D_4$ all 9

Elements of the group are displayed as matrices in $\GL_{2}(\Z/{12}\Z)$.

Homology

Abelianization: $C_{2}^{2} $
Schur multiplier: $C_{2}$
Commutator length: $1$

Subgroups

There are 362 subgroups in 80 conjugacy classes, 15 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $\GL(2,\mathbb{Z}/4)$
Commutator: $G' \simeq$ $C_4\times A_4$ $G/G' \simeq$ $C_2^2$
Frattini: $\Phi \simeq$ $C_4$ $G/\Phi \simeq$ $C_2\times S_4$
Fitting: $\operatorname{Fit} \simeq$ $C_2^2\times D_4$ $G/\operatorname{Fit} \simeq$ $S_3$
Radical: $R \simeq$ $A_4:\SD_{16}$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_2^3$ $G/\operatorname{soc} \simeq$ $C_3:D_4$
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2:\SD_{16}$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $A_4:\SD_{16}$ $\rhd$ $C_4\times A_4$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Chief series $A_4:\SD_{16}$ $\rhd$ $D_4\times A_4$ $\rhd$ $C_4\times A_4$ $\rhd$ $C_2\times A_4$ $\rhd$ $A_4$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Lower central series $A_4:\SD_{16}$ $\rhd$ $C_4\times A_4$ $\rhd$ $C_2\times A_4$ $\rhd$ $A_4$
Upper central series $C_1$ $\lhd$ $C_2$ $\lhd$ $C_4$ $\lhd$ $D_4$

Supergroups

This group is a maximal subgroup of 28 larger groups in the database.

This group is a maximal quotient of 26 larger groups in the database.

Character theory

Complex character table

See the $19 \times 19$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

1A 2A 2B 2C 2D 2E 3A 4A 4B 4C 4D 6A 6B 8A 8B 12A
Size 1 1 3 3 4 12 8 2 6 24 24 8 32 24 24 16
2 P 1A 1A 1A 1A 1A 1A 3A 2A 2A 2A 2C 3A 3A 4B 4A 6A
3 P 1A 2A 2B 2C 2D 2E 1A 4A 4B 4C 4D 2A 2D 8B 8A 4A
Schur
192.973.1a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
192.973.1b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
192.973.1c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
192.973.1d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
192.973.2a 2 2 2 2 2 2 1 2 2 0 0 1 1 0 0 1
192.973.2b 2 2 2 2 0 0 2 2 2 0 0 2 0 0 0 2
192.973.2c 2 2 2 2 2 2 1 2 2 0 0 1 1 0 0 1
192.973.2d 4 4 4 4 0 0 4 0 0 0 0 4 0 0 0 0
192.973.2e 4 4 4 4 0 0 2 4 4 0 0 2 0 0 0 2
192.973.3a 3 3 1 1 3 1 0 3 1 1 1 0 0 1 1 0
192.973.3b 3 3 1 1 3 1 0 3 1 1 1 0 0 1 1 0
192.973.3c 3 3 1 1 3 1 0 3 1 1 1 0 0 1 1 0
192.973.3d 3 3 1 1 3 1 0 3 1 1 1 0 0 1 1 0
192.973.4a 2 4 4 4 4 0 0 2 0 0 0 0 2 0 0 0 0
192.973.6a 6 6 2 2 0 0 0 6 2 0 0 0 0 0 0 0
192.973.6b 12 12 4 4 0 0 0 0 0 0 0 0 0 0 0 0