Properties

Label 192.1471
Order \( 2^{6} \cdot 3 \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2^{2} \)
$\card{\mathrm{Aut}(G)}$ \( 2^{7} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $12$
Trans deg. $24$
Rank $3$

Related objects

Downloads

Learn more

Group information

Description:$\GL(2,\mathbb{Z}/4):C_2$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism group:$\GL(2,\mathbb{Z}/4):C_2^2$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Outer automorphisms:$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Composition factors:$C_2$ x 6, $C_3$
Derived length:$3$

This group is nonabelian and monomial (hence solvable).

Group statistics

Order 1 2 3 4 6 12
Elements 1 39 8 88 24 32 192
Conjugacy classes   1 7 1 12 3 4 28
Divisions 1 7 1 10 2 2 23
Autjugacy classes 1 6 1 7 2 2 19

Dimension 1 2 3 4 6 8 12
Irr. complex chars.   8 10 8 0 2 0 0 28
Irr. rational chars. 8 4 8 1 0 1 1 23

Minimal Presentations

Permutation degree:$12$
Transitive degree:$24$
Rank: $3$
Inequivalent generating triples: $5040$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 6 12 12
Arbitrary 5 7 7

Constructions

Presentation: $\langle a, b, c, d, e \mid a^{2}=b^{6}=c^{2}=d^{2}=e^{4}=[a,d]=[a,e]=[b,e]=[c,d]=[c,e]=[d,e]=1, b^{a}=b^{5}e^{2}, c^{a}=cd, c^{b}=d, d^{b}=cd \rangle$ Copy content Toggle raw display
Permutation group:Degree $12$ $\langle(2,3)(5,6)(7,9)(8,10)(11,12), (5,7,8,11)(6,9,10,12), (6,10)(9,12), (5,8)(6,10)(7,11)(9,12), (2,3,4), (1,2)(3,4), (1,3)(2,4)\rangle$ Copy content Toggle raw display
Matrix group:$\left\langle \left(\begin{array}{rr} 9 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 8 & 9 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 15 & 8 \\ 3 & 1 \end{array}\right), \left(\begin{array}{rr} 3 & 5 \\ 7 & 12 \end{array}\right), \left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right), \left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right) \right\rangle \subseteq \GL_{2}(\Z/16\Z)$
$\left\langle \left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 9 & 2 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 10 & 11 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 18 & 15 \\ 3 & 2 \end{array}\right), \left(\begin{array}{rr} 11 & 15 \\ 5 & 16 \end{array}\right), \left(\begin{array}{rr} 1 & 10 \\ 10 & 1 \end{array}\right) \right\rangle \subseteq \GL_{2}(\Z/20\Z)$
Transitive group: 24T292 24T319 24T395 32T2182 all 5
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $(C_4\times S_4)$ $\,\rtimes\,$ $C_2$ (2) $(C_4:S_4)$ $\,\rtimes\,$ $C_2$ $(C_2\times C_4)$ $\,\rtimes\,$ $S_4$ $(A_4:Q_8)$ $\,\rtimes\,$ $C_2$ all 9
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_2^4$ . $D_6$ $C_4$ . $(C_2\times S_4)$ (2) $(C_2\times S_4)$ . $C_2^2$ (2) $C_2^2$ . $(C_2\times S_4)$ all 11

Elements of the group are displayed as matrices in $\GL_{2}(\Z/{16}\Z)$.

Homology

Abelianization: $C_{2}^{3} $
Schur multiplier: $C_{2}^{3}$
Commutator length: $1$

Subgroups

There are 626 subgroups in 171 conjugacy classes, 29 normal (21 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_4$ $G/Z \simeq$ $C_2\times S_4$
Commutator: $G' \simeq$ $C_2\times A_4$ $G/G' \simeq$ $C_2^3$
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $C_2^2\times S_4$
Fitting: $\operatorname{Fit} \simeq$ $C_2^3\times C_4$ $G/\operatorname{Fit} \simeq$ $S_3$
Radical: $R \simeq$ $\GL(2,\mathbb{Z}/4):C_2$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_2^3$ $G/\operatorname{soc} \simeq$ $C_2\times D_6$
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4^2:C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $\GL(2,\mathbb{Z}/4):C_2$ $\rhd$ $C_2\times A_4$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Chief series $\GL(2,\mathbb{Z}/4):C_2$ $\rhd$ $C_4\times S_4$ $\rhd$ $C_4\times A_4$ $\rhd$ $C_2^2\times C_4$ $\rhd$ $C_4$ $\rhd$ $C_2$ $\rhd$ $C_1$
Lower central series $\GL(2,\mathbb{Z}/4):C_2$ $\rhd$ $C_2\times A_4$ $\rhd$ $A_4$
Upper central series $C_1$ $\lhd$ $C_4$ $\lhd$ $C_2\times C_4$

Supergroups

This group is a maximal subgroup of 46 larger groups in the database.

This group is a maximal quotient of 69 larger groups in the database.

Character theory

Complex character table

See the $28 \times 28$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $23 \times 23$ rational character table.