Properties

Label 1889568.ij
Order \( 2^{5} \cdot 3^{10} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 3 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{8} \cdot 3^{12} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \cdot 3^{2} \)
Perm deg. $27$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 27 | (1,3,2)(4,6,5,8,13,14,17,7,11)(9,15,18,10,16,12)(19,21,23)(20,22,25,24,27,26), (1,2,4)(3,5,7,10,11,13)(6,9,14)(8,12,16)(15,17,18)(19,20,21)(22,24,26,27,23,25) >;
 
Copy content gap:G := Group( (1,3,2)(4,6,5,8,13,14,17,7,11)(9,15,18,10,16,12)(19,21,23)(20,22,25,24,27,26), (1,2,4)(3,5,7,10,11,13)(6,9,14)(8,12,16)(15,17,18)(19,20,21)(22,24,26,27,23,25) );
 
Copy content sage:G = PermutationGroup(['(1,3,2)(4,6,5,8,13,14,17,7,11)(9,15,18,10,16,12)(19,21,23)(20,22,25,24,27,26)', '(1,2,4)(3,5,7,10,11,13)(6,9,14)(8,12,16)(15,17,18)(19,20,21)(22,24,26,27,23,25)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1155175612621707185415403814667519054149451115622517054424581820595084361892500774210817078461329002525348963689803096324662271178417963768647925166511392360816250552604997633092576341443398119966229971995966938052364855342149450586511736266800808862175124424607954771175195265671370397681253549151094277280683515875600134943324964253596202494059188207702097674557208592936544540244881262053168683000773151895631183673868324943973359637246945983,1889568)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 

Group information

Description:$C_3^9.C_2^4.C_6$
Order: \(1889568\)\(\medspace = 2^{5} \cdot 3^{10} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(136048896\)\(\medspace = 2^{8} \cdot 3^{12} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 5, $C_3$ x 10
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 3699 43010 78732 580230 606528 157464 419904 1889568
Conjugacy classes   1 4 377 1 652 28 1 4 1068
Divisions 1 4 214 1 349 14 1 2 586
Autjugacy classes 1 4 56 1 73 7 1 1 144

Minimal presentations

Permutation degree:$27$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid a^{6}=b^{6}=c^{6}=d^{6}=e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([15, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 30, 807032, 10736972, 122, 71073363, 43081218, 89678254, 52969519, 15649684, 5346274, 214, 12138125, 40986560, 16563995, 127372776, 56553546, 14035176, 1542936, 2132316, 306, 97044487, 36858262, 33765157, 2852707, 181908998, 3513398, 20674478, 9637433, 4962128, 2743553, 277928, 527828, 398, 185860809, 39864624, 283623130, 37208185, 9409000, 1568230, 11980, 2110, 75738251, 46189466, 16796201, 3110471, 38981, 5531, 169996332, 47048067, 42709722, 3580272, 1649802, 21192, 315161293, 121746268, 22589323, 7393753, 627583, 78253, 38588414, 160137029, 20703644, 826274, 235004, 224234]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.12, G.13, G.14, G.15]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(1155175612621707185415403814667519054149451115622517054424581820595084361892500774210817078461329002525348963689803096324662271178417963768647925166511392360816250552604997633092576341443398119966229971995966938052364855342149450586511736266800808862175124424607954771175195265671370397681253549151094277280683515875600134943324964253596202494059188207702097674557208592936544540244881262053168683000773151895631183673868324943973359637246945983,1889568); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.12; h := G.13; i := G.14; j := G.15;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1155175612621707185415403814667519054149451115622517054424581820595084361892500774210817078461329002525348963689803096324662271178417963768647925166511392360816250552604997633092576341443398119966229971995966938052364855342149450586511736266800808862175124424607954771175195265671370397681253549151094277280683515875600134943324964253596202494059188207702097674557208592936544540244881262053168683000773151895631183673868324943973359637246945983,1889568)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1155175612621707185415403814667519054149451115622517054424581820595084361892500774210817078461329002525348963689803096324662271178417963768647925166511392360816250552604997633092576341443398119966229971995966938052364855342149450586511736266800808862175124424607954771175195265671370397681253549151094277280683515875600134943324964253596202494059188207702097674557208592936544540244881262053168683000773151895631183673868324943973359637246945983,1889568)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 
Permutation group:Degree $27$ $\langle(1,3,2)(4,6,5,8,13,14,17,7,11)(9,15,18,10,16,12)(19,21,23)(20,22,25,24,27,26) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 27 | (1,3,2)(4,6,5,8,13,14,17,7,11)(9,15,18,10,16,12)(19,21,23)(20,22,25,24,27,26), (1,2,4)(3,5,7,10,11,13)(6,9,14)(8,12,16)(15,17,18)(19,20,21)(22,24,26,27,23,25) >;
 
Copy content gap:G := Group( (1,3,2)(4,6,5,8,13,14,17,7,11)(9,15,18,10,16,12)(19,21,23)(20,22,25,24,27,26), (1,2,4)(3,5,7,10,11,13)(6,9,14)(8,12,16)(15,17,18)(19,20,21)(22,24,26,27,23,25) );
 
Copy content sage:G = PermutationGroup(['(1,3,2)(4,6,5,8,13,14,17,7,11)(9,15,18,10,16,12)(19,21,23)(20,22,25,24,27,26)', '(1,2,4)(3,5,7,10,11,13)(6,9,14)(8,12,16)(15,17,18)(19,20,21)(22,24,26,27,23,25)'])
 
Transitive group: 36T43050 36T43058 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^9.C_2^3)$ . $A_4$ $C_3^9$ . $(C_2^3:A_4)$ $(C_3^9.C_2^4)$ . $C_6$ $(C_3^8.C_2^4:S_3)$ . $C_3$ all 19

Elements of the group are displayed as permutations of degree 27.

Homology

Abelianization: $C_{6} \simeq C_{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2} \times C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 21 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3^9.C_2^4.C_6$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^9.C_2^4$ $G/G' \simeq$ $C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_3^2$ $G/\Phi \simeq$ $C_3^7.C_2^3:A_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^9$ $G/\operatorname{Fit} \simeq$ $C_2^3:A_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^9.C_2^4.C_6$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^7$ $G/\operatorname{soc} \simeq$ $(C_2^2\times C_6^2):C_6$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2\wr C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^9.C_3$

Subgroup diagram and profile

Series

Derived series $C_3^9.C_2^4.C_6$ $\rhd$ $C_3^9.C_2^4$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^9.C_2^4.C_6$ $\rhd$ $C_3^7.C_6^2:A_4$ $\rhd$ $C_3^9.C_2^4$ $\rhd$ $C_3^9.C_2^2$ $\rhd$ $C_3^9$ $\rhd$ $C_3^8$ $\rhd$ $C_3^7$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^9.C_2^4.C_6$ $\rhd$ $C_3^9.C_2^4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 10 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1068 \times 1068$ character table is not available for this group.

Rational character table

The $586 \times 586$ rational character table is not available for this group.