Properties

Label 1856.54
Order \( 2^{6} \cdot 29 \)
Exponent \( 2^{5} \cdot 29 \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 29 \)
$\card{Z(G)}$ \( 2 \cdot 29 \)
$\card{\Aut(G)}$ \( 2^{11} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \cdot 7 \)
Perm deg. $93$
Trans deg. $1856$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := SmallGroup(1856, 54);
 
Copy content gap:G := SmallGroup(1856, 54);
 
Copy content sage_gap:G = libgap.SmallGroup(1856, 54)
 
Copy content comment:Define the group as a permutation group
 
Copy content sage:G = PermutationGroup(['(1,34,2,33)(3,36,4,35)(5,38,6,37)(7,40,8,39)(9,42,10,41)(11,44,12,43)(13,46,14,45)(15,48,16,47)(17,50,18,49)(19,52,20,51)(21,54,22,53)(23,56,24,55)(25,58,26,57)(27,60,28,59)(29,62,30,61)(31,64,32,63)', '(1,18,2,17)(3,20,4,19)(5,22,6,21)(7,24,8,23)(9,26,10,25)(11,28,12,27)(13,30,14,29)(15,32,16,31)(33,58,34,57)(35,60,36,59)(37,62,38,61)(39,64,40,63)(41,56,42,55)(43,53,44,54)(45,50,46,49)(47,52,48,51)', '(1,13,5,12,4,16,8,10,2,14,6,11,3,15,7,9)(17,25,23,31,19,27,22,30,18,26,24,32,20,28,21,29)(33,41,39,47,35,43,38,46,34,42,40,48,36,44,37,45)(49,61,53,60,52,64,56,58,50,62,54,59,51,63,55,57)', '(1,7,3,6,2,8,4,5)(9,15,11,14,10,16,12,13)(17,21,20,24,18,22,19,23)(25,29,28,32,26,30,27,31)(33,37,36,40,34,38,35,39)(41,45,44,48,42,46,43,47)(49,55,51,54,50,56,52,53)(57,63,59,62,58,64,60,61)', '(1,4,2,3)(5,8,6,7)(9,12,10,11)(13,16,14,15)(17,19,18,20)(21,23,22,24)(25,27,26,28)(29,31,30,32)(33,35,34,36)(37,39,38,40)(41,43,42,44)(45,47,46,48)(49,52,50,51)(53,56,54,55)(57,60,58,59)(61,64,62,63)', '(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)', '(65,93,92,91,90,89,88,87,86,85,84,83,82,81,80,79,78,77,76,75,74,73,72,71,70,69,68,67,66)'])
 

Group information

Description:$C_{29}\times Q_{64}$
Order: \(1856\)\(\medspace = 2^{6} \cdot 29 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(928\)\(\medspace = 2^{5} \cdot 29 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_{28}\times C_8.(C_8\times D_4)$, of order \(14336\)\(\medspace = 2^{11} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 6, $C_{29}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Nilpotency class:$5$
Copy content comment:Nilpotency class of the group
 
Copy content magma:NilpotencyClass(G);
 
Copy content gap:NilpotencyClassOfGroup(G);
 
Copy content sage_gap:G.NilpotencyClassOfGroup()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 8 16 29 32 58 116 232 464 928
Elements 1 1 34 4 8 28 16 28 952 112 224 448 1856
Conjugacy classes   1 1 3 2 4 28 8 28 84 56 112 224 551
Divisions 1 1 3 1 1 1 1 1 3 1 1 1 16
Autjugacy classes 1 1 2 1 1 1 1 1 2 1 1 1 14

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 8 16 28 56 112 224 448
Irr. complex chars.   116 435 0 0 0 0 0 0 0 0 551
Irr. rational chars. 4 1 1 1 1 4 1 1 1 1 16

Minimal presentations

Permutation degree:$93$
Transitive degree:$1856$
Rank: $2$
Inequivalent generating pairs: $90$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 2 not computed 448
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: $\langle a, b \mid b^{928}=1, a^{2}=b^{464}, b^{a}=b^{639} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([7, -2, -2, -2, -2, -2, -2, -29, 6496, 17893, 36, 14702, 58, 39203, 80, 33044, 102, 124]); a,b := Explode([G.1, G.2]); AssignNames(~G, ["a", "b", "b2", "b4", "b8", "b16", "b32"]);
 
Copy content gap:G := PcGroupCode(20378595078084293859208837788287050062900087635995,1856); a := G.1; b := G.2;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20378595078084293859208837788287050062900087635995,1856)'); a = G.1; b = G.2;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20378595078084293859208837788287050062900087635995,1856)'); a = G.1; b = G.2;
 
Permutation group:Degree $93$ $\langle(1,34,2,33)(3,36,4,35)(5,38,6,37)(7,40,8,39)(9,42,10,41)(11,44,12,43)(13,46,14,45) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 93 | (1,34,2,33)(3,36,4,35)(5,38,6,37)(7,40,8,39)(9,42,10,41)(11,44,12,43)(13,46,14,45)(15,48,16,47)(17,50,18,49)(19,52,20,51)(21,54,22,53)(23,56,24,55)(25,58,26,57)(27,60,28,59)(29,62,30,61)(31,64,32,63), (1,18,2,17)(3,20,4,19)(5,22,6,21)(7,24,8,23)(9,26,10,25)(11,28,12,27)(13,30,14,29)(15,32,16,31)(33,58,34,57)(35,60,36,59)(37,62,38,61)(39,64,40,63)(41,56,42,55)(43,53,44,54)(45,50,46,49)(47,52,48,51), (1,13,5,12,4,16,8,10,2,14,6,11,3,15,7,9)(17,25,23,31,19,27,22,30,18,26,24,32,20,28,21,29)(33,41,39,47,35,43,38,46,34,42,40,48,36,44,37,45)(49,61,53,60,52,64,56,58,50,62,54,59,51,63,55,57), (1,7,3,6,2,8,4,5)(9,15,11,14,10,16,12,13)(17,21,20,24,18,22,19,23)(25,29,28,32,26,30,27,31)(33,37,36,40,34,38,35,39)(41,45,44,48,42,46,43,47)(49,55,51,54,50,56,52,53)(57,63,59,62,58,64,60,61), (1,4,2,3)(5,8,6,7)(9,12,10,11)(13,16,14,15)(17,19,18,20)(21,23,22,24)(25,27,26,28)(29,31,30,32)(33,35,34,36)(37,39,38,40)(41,43,42,44)(45,47,46,48)(49,52,50,51)(53,56,54,55)(57,60,58,59)(61,64,62,63), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64), (65,93,92,91,90,89,88,87,86,85,84,83,82,81,80,79,78,77,76,75,74,73,72,71,70,69,68,67,66) >;
 
Copy content gap:G := Group( (1,34,2,33)(3,36,4,35)(5,38,6,37)(7,40,8,39)(9,42,10,41)(11,44,12,43)(13,46,14,45)(15,48,16,47)(17,50,18,49)(19,52,20,51)(21,54,22,53)(23,56,24,55)(25,58,26,57)(27,60,28,59)(29,62,30,61)(31,64,32,63), (1,18,2,17)(3,20,4,19)(5,22,6,21)(7,24,8,23)(9,26,10,25)(11,28,12,27)(13,30,14,29)(15,32,16,31)(33,58,34,57)(35,60,36,59)(37,62,38,61)(39,64,40,63)(41,56,42,55)(43,53,44,54)(45,50,46,49)(47,52,48,51), (1,13,5,12,4,16,8,10,2,14,6,11,3,15,7,9)(17,25,23,31,19,27,22,30,18,26,24,32,20,28,21,29)(33,41,39,47,35,43,38,46,34,42,40,48,36,44,37,45)(49,61,53,60,52,64,56,58,50,62,54,59,51,63,55,57), (1,7,3,6,2,8,4,5)(9,15,11,14,10,16,12,13)(17,21,20,24,18,22,19,23)(25,29,28,32,26,30,27,31)(33,37,36,40,34,38,35,39)(41,45,44,48,42,46,43,47)(49,55,51,54,50,56,52,53)(57,63,59,62,58,64,60,61), (1,4,2,3)(5,8,6,7)(9,12,10,11)(13,16,14,15)(17,19,18,20)(21,23,22,24)(25,27,26,28)(29,31,30,32)(33,35,34,36)(37,39,38,40)(41,43,42,44)(45,47,46,48)(49,52,50,51)(53,56,54,55)(57,60,58,59)(61,64,62,63), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64), (65,93,92,91,90,89,88,87,86,85,84,83,82,81,80,79,78,77,76,75,74,73,72,71,70,69,68,67,66) );
 
Copy content sage:G = PermutationGroup(['(1,34,2,33)(3,36,4,35)(5,38,6,37)(7,40,8,39)(9,42,10,41)(11,44,12,43)(13,46,14,45)(15,48,16,47)(17,50,18,49)(19,52,20,51)(21,54,22,53)(23,56,24,55)(25,58,26,57)(27,60,28,59)(29,62,30,61)(31,64,32,63)', '(1,18,2,17)(3,20,4,19)(5,22,6,21)(7,24,8,23)(9,26,10,25)(11,28,12,27)(13,30,14,29)(15,32,16,31)(33,58,34,57)(35,60,36,59)(37,62,38,61)(39,64,40,63)(41,56,42,55)(43,53,44,54)(45,50,46,49)(47,52,48,51)', '(1,13,5,12,4,16,8,10,2,14,6,11,3,15,7,9)(17,25,23,31,19,27,22,30,18,26,24,32,20,28,21,29)(33,41,39,47,35,43,38,46,34,42,40,48,36,44,37,45)(49,61,53,60,52,64,56,58,50,62,54,59,51,63,55,57)', '(1,7,3,6,2,8,4,5)(9,15,11,14,10,16,12,13)(17,21,20,24,18,22,19,23)(25,29,28,32,26,30,27,31)(33,37,36,40,34,38,35,39)(41,45,44,48,42,46,43,47)(49,55,51,54,50,56,52,53)(57,63,59,62,58,64,60,61)', '(1,4,2,3)(5,8,6,7)(9,12,10,11)(13,16,14,15)(17,19,18,20)(21,23,22,24)(25,27,26,28)(29,31,30,32)(33,35,34,36)(37,39,38,40)(41,43,42,44)(45,47,46,48)(49,52,50,51)(53,56,54,55)(57,60,58,59)(61,64,62,63)', '(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)(33,34)(35,36)(37,38)(39,40)(41,42)(43,44)(45,46)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)', '(65,93,92,91,90,89,88,87,86,85,84,83,82,81,80,79,78,77,76,75,74,73,72,71,70,69,68,67,66)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 577 & 0 \\ 0 & 577 \end{array}\right), \left(\begin{array}{rr} 701 & 0 \\ 0 & 656 \end{array}\right), \left(\begin{array}{rr} 0 & 577 \\ 1 & 0 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{929})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(929) | [[577, 0, 0, 577], [701, 0, 0, 656], [0, 577, 1, 0]] >;
 
Copy content gap:G := Group([[[ Z(929)^16, 0*Z(929) ], [ 0*Z(929), Z(929)^16 ]], [[ Z(929)^29, 0*Z(929) ], [ 0*Z(929), Z(929)^899 ]], [[ 0*Z(929), Z(929)^16 ], [ Z(929)^0, 0*Z(929) ]]]);
 
Copy content sage:MS = MatrixSpace(GF(929), 2, 2) G = MatrixGroup([MS([[577, 0], [0, 577]]), MS([[701, 0], [0, 656]]), MS([[0, 577], [1, 0]])])
 
Direct product: $C_{29}$ $\, \times\, $ $Q_{64}$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $Q_{32}$ . $C_{58}$ (2) $C_{232}$ . $D_4$ $C_{116}$ . $D_8$ $C_{58}$ . $D_{16}$ all 12

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2} \times C_{58} \simeq C_{2}^{2} \times C_{29}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 74 subgroups in 30 conjugacy classes, 18 normal (14 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_{58}$ $G/Z \simeq$ $D_{16}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{16}$ $G/G' \simeq$ $C_2\times C_{58}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_{16}$ $G/\Phi \simeq$ $C_2\times C_{58}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{29}\times Q_{64}$ $G/\operatorname{Fit} \simeq$ $C_1$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{29}\times Q_{64}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{58}$ $G/\operatorname{soc} \simeq$ $D_{16}$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $Q_{64}$
29-Sylow subgroup: $P_{ 29 } \simeq$ $C_{29}$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $C_{29}\times Q_{64}$ $\rhd$ $C_{16}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_{29}\times Q_{64}$ $\rhd$ $C_{29}\times Q_{32}$ $\rhd$ $C_{464}$ $\rhd$ $C_{232}$ $\rhd$ $C_{116}$ $\rhd$ $C_{58}$ $\rhd$ $C_{29}$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_{29}\times Q_{64}$ $\rhd$ $C_{16}$ $\rhd$ $C_8$ $\rhd$ $C_4$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_{58}$ $\lhd$ $C_{116}$ $\lhd$ $C_{232}$ $\lhd$ $C_{464}$ $\lhd$ $C_{29}\times Q_{64}$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $551 \times 551$ character table is not available for this group.

Rational character table

1A 2A 4A 4B 4C 8A 16A 29A 32A 58A 116A 116B 116C 232A 464A 928A
Size 1 1 2 16 16 4 8 28 16 28 56 448 448 112 224 448
2 P 1A 1A 2A 2A 2A 4A 8A 29A 16A 29A 58A 58A 58A 116A 232A 464A
29 P 1A 2A 4A 4B 4C 8A 16A 29A 32A 58A 116A 116B 116C 232A 464A 928A
Schur
1856.54.1a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1856.54.1b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1856.54.1c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1856.54.1d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1856.54.1e 28 28 28 28 28 28 28 1 28 1 1 1 1 1 1 1
1856.54.1f 28 28 28 28 28 28 28 1 28 1 1 1 1 1 1 1
1856.54.1g 28 28 28 28 28 28 28 1 28 1 1 1 1 1 1 1
1856.54.1h 28 28 28 28 28 28 28 1 28 1 1 1 1 1 1 1
1856.54.2a 2 2 2 0 0 2 2 2 0 2 2 0 0 2 2 0
1856.54.2b 4 4 4 0 0 4 0 4 0 4 4 0 0 4 0 0
1856.54.2c 8 8 8 0 0 0 0 8 0 8 8 0 0 0 0 0
1856.54.2d 2 16 16 0 0 0 0 0 16 0 16 0 0 0 0 0 0
1856.54.2e 56 56 56 0 0 56 56 2 0 2 2 0 0 2 2 0
1856.54.2f 112 112 112 0 0 112 0 4 0 4 4 0 0 4 0 0
1856.54.2g 224 224 224 0 0 0 0 8 0 8 8 0 0 0 0 0
1856.54.2h 448 448 0 0 0 0 0 16 0 16 0 0 0 0 0 0