Properties

Label 176319369216.bl
Order \( 2^{12} \cdot 3^{16} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{17} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \)
Perm deg. $36$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,28,26,5,2,30,25,6)(3,29,27,4)(7,24,19,36,9,22,20,35)(8,23,21,34)(10,31,11,33)(12,32)(13,17,14,18)(15,16), (1,20,3,19,2,21)(4,10,16,24,6,12,17,23)(5,11,18,22)(7,14,31,27)(8,15,33,26)(9,13,32,25)(28,36,30,35)(29,34) >;
 
Copy content gap:G := Group( (1,28,26,5,2,30,25,6)(3,29,27,4)(7,24,19,36,9,22,20,35)(8,23,21,34)(10,31,11,33)(12,32)(13,17,14,18)(15,16), (1,20,3,19,2,21)(4,10,16,24,6,12,17,23)(5,11,18,22)(7,14,31,27)(8,15,33,26)(9,13,32,25)(28,36,30,35)(29,34) );
 
Copy content sage:G = PermutationGroup(['(1,28,26,5,2,30,25,6)(3,29,27,4)(7,24,19,36,9,22,20,35)(8,23,21,34)(10,31,11,33)(12,32)(13,17,14,18)(15,16)', '(1,20,3,19,2,21)(4,10,16,24,6,12,17,23)(5,11,18,22)(7,14,31,27)(8,15,33,26)(9,13,32,25)(28,36,30,35)(29,34)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(363849711526660559092860225287857458212295130367197862604556544667048125270522832327707066005813801823311246665224083488327670270072344357729720033390469314979376007200756230300556522546688816307864209074181383598149592775267992823687773497476066248512188157312493734726950064002620239427822411588869230882221746019748562489277441325448986141407110535992964750287657423341143218367851330985024772768187193098066809857807367693373708119051257850535113213195440417114221100776174021277016671450496719146681956396879727623356385601762539302491449983469105633901500228951489587020281348515574785104641650467100734760228490809627907321700308829463851489619631132650957186427654058756017616982311129964065804776554007722448489848112182695232149117863461969444736798817976940375119747739344095991068245215690104422698980017769656042293068211283293123174173508101163252467535100268040282350643979086968002385302888388200185541146908999518284586080379338098983232164249443494104051973424009146913910468185078028517056562599922664354760781401800771339660911812192177845073831439056499504757968983114728803427151657234658524735425098036153234139642017584021029959873492965623429174765375135675832610764753977681174225362643985776116719338396426353615723720381576987521513364666030173865555617435531779247454091697846730557595023978191119307033076994922105622080548013248684961086652586917737787098946680535178242884307317918298208735128438122737177208425914358721112519587454465216345270238102992237132932158679498995818835423672041986686458801624549259103391823348558594041330572136939543609580849478180881102148872279524909177964669880526306182104263301020710632327147603405615333939820129672551771800065942576258532443357289586181442771545207312942114552095531256490157630638451582968149199392790139842116983074670010447297315967846860062524201812511436330944990707720561805477442051391737915863110202769900887232447259601240122606865477951469215830936469197533711705565793391957899939117512602789286537608322412481168329299935195244266159012684145562413037165619611572548761811892499191221050709029324852613811178806356863227258015456694027211076244695054067098630988714990044476323926337672461491145966116106699230779976924039370422227000746524916848845224963795283325653191899875608361060071125650255053704198267381379680436274720209149139992841905978315557589745187711069769552277323747816196222026329553821023125290789239243635904646931351960502047599163290529112559398503083510417499240253533279282810542113884489586258587827277480872765294244185399637533183712830990428470564492123687679357766572529649613897295898166583750589929645759931906593931630966318959264254039973652158441950145772890139081096490943340810637535196337470167111088692283217037318981104020521071811923678965139123160167522562337331737528924187993108627531903979455569939605852596393442327719158859665002139896037652355084388037711657715917310550435075994896223634133044028413200503202879761555355480464928856713480357215716849712379277456098640612241484303362662685231194955974120890638184721461834906376421542073966856462509795276097440786983472973559494259880835912860723668660280625211941097646729233505919694644575408129150078171492849487309074559763928664159687638457682243018465698085601808128546256477803946876093309621755212676897857613111840451161709368890732081662053281619533399717920665216783614577874501332836375090972937197041650741370062094638095101778465883304573021233983920655232770990995999315701898619407251060177330952540467609250429918178351313757832250543036396612301943934036439207362035786263566746271336417110783,176319369216)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28;
 

Group information

Description:$C_3^{12}.C_2^8.C_3^4.C_4:C_4$
Order: \(176319369216\)\(\medspace = 2^{12} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(5642219814912\)\(\medspace = 2^{17} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24
Elements 1 10902303 96059600 2673738720 13340253744 30611001600 3390724800 51048569088 6579475776 68568643584 176319369216
Conjugacy classes   1 15 247 18 1024 18 765 316 610 44 3058
Divisions 1 15 247 16 947 10 765 276 610 22 2909
Autjugacy classes 1 13 119 12 456 4 114 116 149 8 992

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r \mid h^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([28, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 56, 3162681877853, 3834667266866, 4752736076454, 226, 13423104820611, 3183921656415, 875547866679, 23126899857604, 12222507288352, 3233308649260, 2144167324128, 1070407457396, 11912910578693, 12186777947937, 2487575342173, 3199849717769, 661971114117, 481, 26094730517638, 14603747674018, 2904356685838, 1658895352890, 1857594115726, 359272102062, 36094496972807, 16164791209763, 1037863114687, 1664326327195, 1955180027927, 321613787859, 408357638479, 651, 15539994134792, 16917042264228, 4999266407584, 4029904944668, 1561405334952, 385358133028, 443389302392, 24906232744, 19297650296969, 20856616542757, 2418698434945, 4948299538653, 1455521508121, 377952593909, 417953395617, 118874241565, 31447713593, 821, 16346373198858, 17925050981414, 1266927262898, 5523495981790, 2823352852442, 401679188214, 414766299202, 170953497998, 12437877378, 4445135138, 2706961254155, 23358943544871, 8139792845251, 1524722548703, 1459178001915, 726124694551, 570959274995, 70537560111, 70595011099, 26362508519, 6602385171, 991, 23141831824396, 7343337560872, 15069918647124, 4340247964512, 3688434719548, 409090421528, 637826743188, 201118859968, 70148110268, 14305169688, 14279693356, 875557212, 27958708624909, 2924045236265, 3658732749573, 4855288241761, 1409302613501, 633236712345, 314751987829, 158948903441, 46917009453, 934539241, 3271627589, 4544146641, 2216188813, 1161, 2325144890894, 6417637309482, 2057699427910, 1411119118178, 3211392199806, 1338924172474, 636306269942, 79376371410, 3488002798, 940615466, 17704567734, 6037607842, 2950761590, 36193500693519, 13702660780075, 15095711925575, 2647870138467, 657139682431, 238181497499, 168529310391, 164616469459, 120246191087, 22425677835, 1005105319, 1890118595, 3101910687, 3486715, 872663, 1331, 64369133015056, 4324042856492, 14711474244168, 2458293751972, 231907520028, 734341894456, 119177155988, 26875897008, 15422880076, 20431698632, 2570480292, 3405283408, 44724188299409, 42482659742253, 11165155634377, 7438014356069, 271249026177, 1002196178077, 187023562169, 286017595125, 117286372465, 13456897037, 9698149737, 3899297125, 1616358593, 881381469, 989257, 94642565, 1501, 63764267986962, 33756159338542, 17031784121930, 11466126431526, 464950959106, 847787679806, 755377249722, 75425530198, 34923825458, 20859286158, 20871007210, 8102917862, 3478501506, 1329110878, 195318918, 64188051540499, 35408042127407, 14602379500875, 7008464010343, 4801377047171, 1682628434079, 475191360187, 226615899095, 51265025523, 2166393871, 4904323499, 356711367, 817387555, 422997503, 666671451, 15705079, 111475187, 911055, 1671, 33566170079252, 21997533616176, 10504963768396, 10160922465896, 403284946308, 1774414077568, 968191128764, 233406666072, 30375360532, 37657364240, 9556082220, 6280799944, 1592680676, 655869696, 166084568, 1341136, 84410351714325, 35765631627313, 558707466317, 8941407906921, 315164159065, 93415956725, 57480465, 63688917745174, 1635489128498, 25960144974, 408872282218, 19470108806, 1524076840098, 34072690366, 254012806874, 5678781942, 55375633426, 946463918, 9229272522, 157744294, 835066, 139602, 23738, 79792288579607, 36145551310899, 12750595264591, 11388602695787, 2852229832839, 1506064638115, 475371638975, 41835129107, 17202254127, 6972521803, 2867042663, 733598595, 193681595, 69509956723224, 37736268595252, 28651006540880, 11841964646508, 2907583257736, 1575871718564, 238281523392, 2939328220, 181454515448, 43774214676, 24859094704, 7295702732, 4143182760, 804989188, 199030044, 1814900, 74820077789209, 15115040059445, 29049034420305, 4074668043373, 7602320614025, 1427777298021, 392506104001, 337210788317, 153022589241, 67274468629, 12669157169, 11218072653, 2111526505, 1665885701, 23587645, 3931701, 5434349, 60083835678746, 8319662088246, 584103260242, 10440210880622, 8257442393226, 2050710359206, 1351479499970, 444003130590, 28887715834, 53378196758, 33202649394, 8896366414, 5533775210, 479110854, 275099774, 6777286, 1130022, 57943761813531, 59669504520247, 32853023207507, 14951613422703, 3349121707147, 985420243751, 1014828466371, 424088856799, 114563248379, 49295361303, 21953079091, 8215893839, 3658846827, 2105623687, 270668607, 21845879, 1811599]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r := Explode([G.1, G.3, G.5, G.6, G.8, G.10, G.12, G.14, G.16, G.18, G.20, G.22, G.23, G.24, G.25, G.26, G.27, G.28]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "m", "n", "o", "p", "q", "r"]);
 
Copy content gap:G := PcGroupCode(363849711526660559092860225287857458212295130367197862604556544667048125270522832327707066005813801823311246665224083488327670270072344357729720033390469314979376007200756230300556522546688816307864209074181383598149592775267992823687773497476066248512188157312493734726950064002620239427822411588869230882221746019748562489277441325448986141407110535992964750287657423341143218367851330985024772768187193098066809857807367693373708119051257850535113213195440417114221100776174021277016671450496719146681956396879727623356385601762539302491449983469105633901500228951489587020281348515574785104641650467100734760228490809627907321700308829463851489619631132650957186427654058756017616982311129964065804776554007722448489848112182695232149117863461969444736798817976940375119747739344095991068245215690104422698980017769656042293068211283293123174173508101163252467535100268040282350643979086968002385302888388200185541146908999518284586080379338098983232164249443494104051973424009146913910468185078028517056562599922664354760781401800771339660911812192177845073831439056499504757968983114728803427151657234658524735425098036153234139642017584021029959873492965623429174765375135675832610764753977681174225362643985776116719338396426353615723720381576987521513364666030173865555617435531779247454091697846730557595023978191119307033076994922105622080548013248684961086652586917737787098946680535178242884307317918298208735128438122737177208425914358721112519587454465216345270238102992237132932158679498995818835423672041986686458801624549259103391823348558594041330572136939543609580849478180881102148872279524909177964669880526306182104263301020710632327147603405615333939820129672551771800065942576258532443357289586181442771545207312942114552095531256490157630638451582968149199392790139842116983074670010447297315967846860062524201812511436330944990707720561805477442051391737915863110202769900887232447259601240122606865477951469215830936469197533711705565793391957899939117512602789286537608322412481168329299935195244266159012684145562413037165619611572548761811892499191221050709029324852613811178806356863227258015456694027211076244695054067098630988714990044476323926337672461491145966116106699230779976924039370422227000746524916848845224963795283325653191899875608361060071125650255053704198267381379680436274720209149139992841905978315557589745187711069769552277323747816196222026329553821023125290789239243635904646931351960502047599163290529112559398503083510417499240253533279282810542113884489586258587827277480872765294244185399637533183712830990428470564492123687679357766572529649613897295898166583750589929645759931906593931630966318959264254039973652158441950145772890139081096490943340810637535196337470167111088692283217037318981104020521071811923678965139123160167522562337331737528924187993108627531903979455569939605852596393442327719158859665002139896037652355084388037711657715917310550435075994896223634133044028413200503202879761555355480464928856713480357215716849712379277456098640612241484303362662685231194955974120890638184721461834906376421542073966856462509795276097440786983472973559494259880835912860723668660280625211941097646729233505919694644575408129150078171492849487309074559763928664159687638457682243018465698085601808128546256477803946876093309621755212676897857613111840451161709368890732081662053281619533399717920665216783614577874501332836375090972937197041650741370062094638095101778465883304573021233983920655232770990995999315701898619407251060177330952540467609250429918178351313757832250543036396612301943934036439207362035786263566746271336417110783,176319369216); a := G.1; b := G.3; c := G.5; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.18; k := G.20; l := G.22; m := G.23; n := G.24; o := G.25; p := G.26; q := G.27; r := G.28;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(363849711526660559092860225287857458212295130367197862604556544667048125270522832327707066005813801823311246665224083488327670270072344357729720033390469314979376007200756230300556522546688816307864209074181383598149592775267992823687773497476066248512188157312493734726950064002620239427822411588869230882221746019748562489277441325448986141407110535992964750287657423341143218367851330985024772768187193098066809857807367693373708119051257850535113213195440417114221100776174021277016671450496719146681956396879727623356385601762539302491449983469105633901500228951489587020281348515574785104641650467100734760228490809627907321700308829463851489619631132650957186427654058756017616982311129964065804776554007722448489848112182695232149117863461969444736798817976940375119747739344095991068245215690104422698980017769656042293068211283293123174173508101163252467535100268040282350643979086968002385302888388200185541146908999518284586080379338098983232164249443494104051973424009146913910468185078028517056562599922664354760781401800771339660911812192177845073831439056499504757968983114728803427151657234658524735425098036153234139642017584021029959873492965623429174765375135675832610764753977681174225362643985776116719338396426353615723720381576987521513364666030173865555617435531779247454091697846730557595023978191119307033076994922105622080548013248684961086652586917737787098946680535178242884307317918298208735128438122737177208425914358721112519587454465216345270238102992237132932158679498995818835423672041986686458801624549259103391823348558594041330572136939543609580849478180881102148872279524909177964669880526306182104263301020710632327147603405615333939820129672551771800065942576258532443357289586181442771545207312942114552095531256490157630638451582968149199392790139842116983074670010447297315967846860062524201812511436330944990707720561805477442051391737915863110202769900887232447259601240122606865477951469215830936469197533711705565793391957899939117512602789286537608322412481168329299935195244266159012684145562413037165619611572548761811892499191221050709029324852613811178806356863227258015456694027211076244695054067098630988714990044476323926337672461491145966116106699230779976924039370422227000746524916848845224963795283325653191899875608361060071125650255053704198267381379680436274720209149139992841905978315557589745187711069769552277323747816196222026329553821023125290789239243635904646931351960502047599163290529112559398503083510417499240253533279282810542113884489586258587827277480872765294244185399637533183712830990428470564492123687679357766572529649613897295898166583750589929645759931906593931630966318959264254039973652158441950145772890139081096490943340810637535196337470167111088692283217037318981104020521071811923678965139123160167522562337331737528924187993108627531903979455569939605852596393442327719158859665002139896037652355084388037711657715917310550435075994896223634133044028413200503202879761555355480464928856713480357215716849712379277456098640612241484303362662685231194955974120890638184721461834906376421542073966856462509795276097440786983472973559494259880835912860723668660280625211941097646729233505919694644575408129150078171492849487309074559763928664159687638457682243018465698085601808128546256477803946876093309621755212676897857613111840451161709368890732081662053281619533399717920665216783614577874501332836375090972937197041650741370062094638095101778465883304573021233983920655232770990995999315701898619407251060177330952540467609250429918178351313757832250543036396612301943934036439207362035786263566746271336417110783,176319369216)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(363849711526660559092860225287857458212295130367197862604556544667048125270522832327707066005813801823311246665224083488327670270072344357729720033390469314979376007200756230300556522546688816307864209074181383598149592775267992823687773497476066248512188157312493734726950064002620239427822411588869230882221746019748562489277441325448986141407110535992964750287657423341143218367851330985024772768187193098066809857807367693373708119051257850535113213195440417114221100776174021277016671450496719146681956396879727623356385601762539302491449983469105633901500228951489587020281348515574785104641650467100734760228490809627907321700308829463851489619631132650957186427654058756017616982311129964065804776554007722448489848112182695232149117863461969444736798817976940375119747739344095991068245215690104422698980017769656042293068211283293123174173508101163252467535100268040282350643979086968002385302888388200185541146908999518284586080379338098983232164249443494104051973424009146913910468185078028517056562599922664354760781401800771339660911812192177845073831439056499504757968983114728803427151657234658524735425098036153234139642017584021029959873492965623429174765375135675832610764753977681174225362643985776116719338396426353615723720381576987521513364666030173865555617435531779247454091697846730557595023978191119307033076994922105622080548013248684961086652586917737787098946680535178242884307317918298208735128438122737177208425914358721112519587454465216345270238102992237132932158679498995818835423672041986686458801624549259103391823348558594041330572136939543609580849478180881102148872279524909177964669880526306182104263301020710632327147603405615333939820129672551771800065942576258532443357289586181442771545207312942114552095531256490157630638451582968149199392790139842116983074670010447297315967846860062524201812511436330944990707720561805477442051391737915863110202769900887232447259601240122606865477951469215830936469197533711705565793391957899939117512602789286537608322412481168329299935195244266159012684145562413037165619611572548761811892499191221050709029324852613811178806356863227258015456694027211076244695054067098630988714990044476323926337672461491145966116106699230779976924039370422227000746524916848845224963795283325653191899875608361060071125650255053704198267381379680436274720209149139992841905978315557589745187711069769552277323747816196222026329553821023125290789239243635904646931351960502047599163290529112559398503083510417499240253533279282810542113884489586258587827277480872765294244185399637533183712830990428470564492123687679357766572529649613897295898166583750589929645759931906593931630966318959264254039973652158441950145772890139081096490943340810637535196337470167111088692283217037318981104020521071811923678965139123160167522562337331737528924187993108627531903979455569939605852596393442327719158859665002139896037652355084388037711657715917310550435075994896223634133044028413200503202879761555355480464928856713480357215716849712379277456098640612241484303362662685231194955974120890638184721461834906376421542073966856462509795276097440786983472973559494259880835912860723668660280625211941097646729233505919694644575408129150078171492849487309074559763928664159687638457682243018465698085601808128546256477803946876093309621755212676897857613111840451161709368890732081662053281619533399717920665216783614577874501332836375090972937197041650741370062094638095101778465883304573021233983920655232770990995999315701898619407251060177330952540467609250429918178351313757832250543036396612301943934036439207362035786263566746271336417110783,176319369216)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.23; n = G.24; o = G.25; p = G.26; q = G.27; r = G.28;
 
Permutation group:Degree $36$ $\langle(1,28,26,5,2,30,25,6)(3,29,27,4)(7,24,19,36,9,22,20,35)(8,23,21,34)(10,31,11,33) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,28,26,5,2,30,25,6)(3,29,27,4)(7,24,19,36,9,22,20,35)(8,23,21,34)(10,31,11,33)(12,32)(13,17,14,18)(15,16), (1,20,3,19,2,21)(4,10,16,24,6,12,17,23)(5,11,18,22)(7,14,31,27)(8,15,33,26)(9,13,32,25)(28,36,30,35)(29,34) >;
 
Copy content gap:G := Group( (1,28,26,5,2,30,25,6)(3,29,27,4)(7,24,19,36,9,22,20,35)(8,23,21,34)(10,31,11,33)(12,32)(13,17,14,18)(15,16), (1,20,3,19,2,21)(4,10,16,24,6,12,17,23)(5,11,18,22)(7,14,31,27)(8,15,33,26)(9,13,32,25)(28,36,30,35)(29,34) );
 
Copy content sage:G = PermutationGroup(['(1,28,26,5,2,30,25,6)(3,29,27,4)(7,24,19,36,9,22,20,35)(8,23,21,34)(10,31,11,33)(12,32)(13,17,14,18)(15,16)', '(1,20,3,19,2,21)(4,10,16,24,6,12,17,23)(5,11,18,22)(7,14,31,27)(8,15,33,26)(9,13,32,25)(28,36,30,35)(29,34)'])
 
Transitive group: 36T117181 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(C_2^9.C_3^4:Q_8)$ $(C_3^{12}.C_2)$ . $(C_2^8.C_3^4:Q_8)$ $(C_3^{12}.C_2^6.A_4.C_6)$ . $\PSU(3,2)$ (4) $(C_3^{12}.C_2^6.C_6^2.C_3.S_3)$ . $D_4$ all 13

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 24 normal subgroups (12 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.C_2^5.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 10 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3058 \times 3058$ character table is not available for this group.

Rational character table

The $2909 \times 2909$ rational character table is not available for this group.