Properties

Label 17006112.cy
Order \( 2^{5} \cdot 3^{12} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 3^{2} \)
$\card{Z(G)}$ 3
$\card{\Aut(G)}$ \( 2^{9} \cdot 3^{15} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \cdot 3^{4} \)
Perm deg. not computed
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,13,25,2,15,27,3,14,26)(4,17,32,5,16,33,6,18,31)(7,20,29,8,21,30,9,19,28)(10,22,34,11,23,35,12,24,36), (1,8,14,19,26,33,3,9,15,20,27,31,2,7,13,21,25,32)(4,10,17,24,29,34,6,11,18,22,28,35,5,12,16,23,30,36) >;
 
Copy content gap:G := Group( (1,13,25,2,15,27,3,14,26)(4,17,32,5,16,33,6,18,31)(7,20,29,8,21,30,9,19,28)(10,22,34,11,23,35,12,24,36), (1,8,14,19,26,33,3,9,15,20,27,31,2,7,13,21,25,32)(4,10,17,24,29,34,6,11,18,22,28,35,5,12,16,23,30,36) );
 
Copy content sage:G = PermutationGroup(['(1,13,25,2,15,27,3,14,26)(4,17,32,5,16,33,6,18,31)(7,20,29,8,21,30,9,19,28)(10,22,34,11,23,35,12,24,36)', '(1,8,14,19,26,33,3,9,15,20,27,31,2,7,13,21,25,32)(4,10,17,24,29,34,6,11,18,22,28,35,5,12,16,23,30,36)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20934044371977258267572428075888154910475715269151764316479329952595071572454455816714393657668643709423987687121905752523463982476866577196234614650905722137337508086907423878371557814414863455481835207151613842065386118632029029753744343676781226432597466056755350723458958086222656155181761470818385659712722299628939582287089254608511646187817749751131425724514009125995379260908668027379126908319583882088227502805225614988940767038358672591235402403990508931678208494628394152635427718504982852601660090128464467090289117186841694181049190103385255344855560511034168898844093355421589467290510280958585599,17006112)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 

Group information

Description:$C_3^7.C_6^4:C_6$
Order: \(17006112\)\(\medspace = 2^{5} \cdot 3^{12} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(7346640384\)\(\medspace = 2^{9} \cdot 3^{15} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 5, $C_3$ x 12
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 3699 387098 78732 5251662 5458752 2047032 3779136 17006112
Conjugacy classes   1 4 3329 1 5876 84 17 12 9324
Divisions 1 4 1690 1 2961 42 9 6 4714

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid b^{6}=c^{6}=d^{6}=e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 34, 287444178, 649696448, 251446339, 138, 767948211, 259096748, 1230402034, 698256066, 22742468, 20199370, 242, 1270689485, 104567566, 108927471, 974178036, 729055784, 206818708, 16914020, 21141988, 346, 1006560487, 731992008, 196359017, 32726571, 744056450, 365378254, 84503778, 193149095, 7309192, 19371, 8885432, 6094, 450, 302450409, 1096143026, 181617163, 4198397, 5687631, 1198188298, 971144883, 2390, 33958667, 1711683244, 509996781, 34301455, 6073601, 1192323, 618120216, 1305199067, 86497678, 18985748, 12681978, 1308910, 652898749, 290927898, 515725103, 76994985, 13349059, 1435289, 1915039814, 524152021, 132522528, 92959822, 15541856, 127140, 425857359, 1987188512, 198464305, 95237075, 17136117, 1996087, 2645182336, 314620461, 70039778, 84112956, 1602334, 2960090]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.12, G.13, G.14, G.15, G.16, G.17]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "g", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(20934044371977258267572428075888154910475715269151764316479329952595071572454455816714393657668643709423987687121905752523463982476866577196234614650905722137337508086907423878371557814414863455481835207151613842065386118632029029753744343676781226432597466056755350723458958086222656155181761470818385659712722299628939582287089254608511646187817749751131425724514009125995379260908668027379126908319583882088227502805225614988940767038358672591235402403990508931678208494628394152635427718504982852601660090128464467090289117186841694181049190103385255344855560511034168898844093355421589467290510280958585599,17006112); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.12; h := G.13; i := G.14; j := G.15; k := G.16; l := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20934044371977258267572428075888154910475715269151764316479329952595071572454455816714393657668643709423987687121905752523463982476866577196234614650905722137337508086907423878371557814414863455481835207151613842065386118632029029753744343676781226432597466056755350723458958086222656155181761470818385659712722299628939582287089254608511646187817749751131425724514009125995379260908668027379126908319583882088227502805225614988940767038358672591235402403990508931678208494628394152635427718504982852601660090128464467090289117186841694181049190103385255344855560511034168898844093355421589467290510280958585599,17006112)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20934044371977258267572428075888154910475715269151764316479329952595071572454455816714393657668643709423987687121905752523463982476866577196234614650905722137337508086907423878371557814414863455481835207151613842065386118632029029753744343676781226432597466056755350723458958086222656155181761470818385659712722299628939582287089254608511646187817749751131425724514009125995379260908668027379126908319583882088227502805225614988940767038358672591235402403990508931678208494628394152635427718504982852601660090128464467090289117186841694181049190103385255344855560511034168898844093355421589467290510280958585599,17006112)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 
Permutation group:Degree $36$ $\langle(1,13,25,2,15,27,3,14,26)(4,17,32,5,16,33,6,18,31)(7,20,29,8,21,30,9,19,28) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,13,25,2,15,27,3,14,26)(4,17,32,5,16,33,6,18,31)(7,20,29,8,21,30,9,19,28)(10,22,34,11,23,35,12,24,36), (1,8,14,19,26,33,3,9,15,20,27,31,2,7,13,21,25,32)(4,10,17,24,29,34,6,11,18,22,28,35,5,12,16,23,30,36) >;
 
Copy content gap:G := Group( (1,13,25,2,15,27,3,14,26)(4,17,32,5,16,33,6,18,31)(7,20,29,8,21,30,9,19,28)(10,22,34,11,23,35,12,24,36), (1,8,14,19,26,33,3,9,15,20,27,31,2,7,13,21,25,32)(4,10,17,24,29,34,6,11,18,22,28,35,5,12,16,23,30,36) );
 
Copy content sage:G = PermutationGroup(['(1,13,25,2,15,27,3,14,26)(4,17,32,5,16,33,6,18,31)(7,20,29,8,21,30,9,19,28)(10,22,34,11,23,35,12,24,36)', '(1,8,14,19,26,33,3,9,15,20,27,31,2,7,13,21,25,32)(4,10,17,24,29,34,6,11,18,22,28,35,5,12,16,23,30,36)'])
 
Transitive group: 36T64614 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^7$ . $(C_6^4:C_6)$ $C_3^7$ . $(C_6^4:C_6)$ $(C_3^{11}.C_2^3)$ . $A_4$ $C_3^{11}$ . $(C_2^3:A_4)$ all 56

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{3} \times C_{6} \simeq C_{2} \times C_{3}^{2}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{3} \times C_{6}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 66 normal subgroups (57 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_3$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_3^3$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{11}.C_3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 9 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $9324 \times 9324$ character table is not available for this group.

Rational character table

The $4714 \times 4714$ rational character table is not available for this group.