Properties

Label 1679616.nb
Order \( 2^{8} \cdot 3^{8} \)
Exponent \( 2^{4} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $36$
Trans deg. not computed
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,12,21,29,2,18,22,36,5,10,20,35,4,13,25,28)(3,15,26,31,8,14,27,34,6,16,24,33,7,17,23,30)(9,11,19,32), (1,15,26,30,2,13,19,36,5,11,23,28,4,10,21,31)(3,14,24,33,8,18,27,32,6,12,25,34,7,17,22,35)(9,16,20,29) >;
 
Copy content gap:G := Group( (1,12,21,29,2,18,22,36,5,10,20,35,4,13,25,28)(3,15,26,31,8,14,27,34,6,16,24,33,7,17,23,30)(9,11,19,32), (1,15,26,30,2,13,19,36,5,11,23,28,4,10,21,31)(3,14,24,33,8,18,27,32,6,12,25,34,7,17,22,35)(9,16,20,29) );
 
Copy content sage:G = PermutationGroup(['(1,12,21,29,2,18,22,36,5,10,20,35,4,13,25,28)(3,15,26,31,8,14,27,34,6,16,24,33,7,17,23,30)(9,11,19,32)', '(1,15,26,30,2,13,19,36,5,11,23,28,4,10,21,31)(3,14,24,33,8,18,27,32,6,12,25,34,7,17,22,35)(9,16,20,29)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(499374196723978425911574054482063250058198293302729003209024818092534050334197520205844896619479935938846404617029536122245712628904436958961647297734333311490026798096660070477068431521795867787030293247936954394799315265688987661399804721923796709360144764707682670524647937733669318904317222630505351824928298013109435811863571061722361359769556165431860338517385692894760441658744858704218596034653643623027269210253864420872365157096529441142652337332389090962893794881565187897742133838853132038547019773786108447994951525319682178274086660676604227770727078486292117426465153098539781195227398399,1679616)'); a = G.1; b = G.4; c = G.7; d = G.10; e = G.11; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16;
 

Group information

Description:$C_3^8.C_4^2.C_4.C_2^2$
Order: \(1679616\)\(\medspace = 2^{8} \cdot 3^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(26873856\)\(\medspace = 2^{12} \cdot 3^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 8, $C_3$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial or almost simple has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16
Elements 1 7047 6560 84888 38880 629856 72576 839808 1679616
Conjugacy classes   1 3 29 8 7 14 8 8 78
Divisions 1 3 29 6 7 7 4 2 59
Autjugacy classes 1 3 10 6 5 8 5 1 39

Minimal presentations

Permutation degree:$36$
Transitive degree:not computed
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 32 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid b^{8}=c^{12}=d^{3}=e^{3}=f^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([16, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 32, 81, 6958498, 69523971, 22120211, 5841059, 179, 113696004, 39036820, 11581796, 228, 40111109, 23557653, 24564517, 43866374, 38001174, 10094374, 1427382, 9193478, 5855670, 326, 52482055, 27484183, 35287079, 25233463, 9622599, 5209687, 375, 147308552, 116527128, 56918056, 16464440, 8234568, 2392, 172482569, 30044185, 59443241, 29752377, 14860873, 7769, 2557545, 2041, 64700426, 74072090, 73869354, 14294074, 14336330, 25434, 1801642, 6458, 199409675, 154877979, 76886059, 15390779, 16923723, 83035, 3873131, 2217723, 207081484, 69941276, 732204, 30065212, 14636620, 269660, 5301612, 2048092, 91349005, 54190109, 80381997, 11153469, 5673549, 871005, 233965, 2059133, 88104974, 156579870, 39121966, 11289662, 5679438, 2799454, 714350, 699966, 42598415, 82346015, 7569455, 44105791, 26185807, 8958047, 6331503, 3168895]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.4, G.7, G.10, G.11, G.12, G.13, G.14, G.15, G.16]); AssignNames(~G, ["a", "a2", "a4", "b", "b2", "b4", "c", "c2", "c4", "d", "e", "f", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(499374196723978425911574054482063250058198293302729003209024818092534050334197520205844896619479935938846404617029536122245712628904436958961647297734333311490026798096660070477068431521795867787030293247936954394799315265688987661399804721923796709360144764707682670524647937733669318904317222630505351824928298013109435811863571061722361359769556165431860338517385692894760441658744858704218596034653643623027269210253864420872365157096529441142652337332389090962893794881565187897742133838853132038547019773786108447994951525319682178274086660676604227770727078486292117426465153098539781195227398399,1679616); a := G.1; b := G.4; c := G.7; d := G.10; e := G.11; f := G.12; g := G.13; h := G.14; i := G.15; j := G.16;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(499374196723978425911574054482063250058198293302729003209024818092534050334197520205844896619479935938846404617029536122245712628904436958961647297734333311490026798096660070477068431521795867787030293247936954394799315265688987661399804721923796709360144764707682670524647937733669318904317222630505351824928298013109435811863571061722361359769556165431860338517385692894760441658744858704218596034653643623027269210253864420872365157096529441142652337332389090962893794881565187897742133838853132038547019773786108447994951525319682178274086660676604227770727078486292117426465153098539781195227398399,1679616)'); a = G.1; b = G.4; c = G.7; d = G.10; e = G.11; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(499374196723978425911574054482063250058198293302729003209024818092534050334197520205844896619479935938846404617029536122245712628904436958961647297734333311490026798096660070477068431521795867787030293247936954394799315265688987661399804721923796709360144764707682670524647937733669318904317222630505351824928298013109435811863571061722361359769556165431860338517385692894760441658744858704218596034653643623027269210253864420872365157096529441142652337332389090962893794881565187897742133838853132038547019773786108447994951525319682178274086660676604227770727078486292117426465153098539781195227398399,1679616)'); a = G.1; b = G.4; c = G.7; d = G.10; e = G.11; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16;
 
Permutation group:Degree $36$ $\langle(1,12,21,29,2,18,22,36,5,10,20,35,4,13,25,28)(3,15,26,31,8,14,27,34,6,16,24,33,7,17,23,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,12,21,29,2,18,22,36,5,10,20,35,4,13,25,28)(3,15,26,31,8,14,27,34,6,16,24,33,7,17,23,30)(9,11,19,32), (1,15,26,30,2,13,19,36,5,11,23,28,4,10,21,31)(3,14,24,33,8,18,27,32,6,12,25,34,7,17,22,35)(9,16,20,29) >;
 
Copy content gap:G := Group( (1,12,21,29,2,18,22,36,5,10,20,35,4,13,25,28)(3,15,26,31,8,14,27,34,6,16,24,33,7,17,23,30)(9,11,19,32), (1,15,26,30,2,13,19,36,5,11,23,28,4,10,21,31)(3,14,24,33,8,18,27,32,6,12,25,34,7,17,22,35)(9,16,20,29) );
 
Copy content sage:G = PermutationGroup(['(1,12,21,29,2,18,22,36,5,10,20,35,4,13,25,28)(3,15,26,31,8,14,27,34,6,16,24,33,7,17,23,30)(9,11,19,32)', '(1,15,26,30,2,13,19,36,5,11,23,28,4,10,21,31)(3,14,24,33,8,18,27,32,6,12,25,34,7,17,22,35)(9,16,20,29)'])
 
Transitive group: 36T41142 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2} \times C_{8} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{4}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

Subgroup data has not been computed.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $78 \times 78$ character table is not available for this group.

Rational character table

The $59 \times 59$ rational character table is not available for this group.