| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j \mid b^{8}=c^{12}=d^{3}=e^{3}=f^{3}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([16, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 32, 81, 6958498, 69523971, 22120211, 5841059, 179, 113696004, 39036820, 11581796, 228, 40111109, 23557653, 24564517, 43866374, 38001174, 10094374, 1427382, 9193478, 5855670, 326, 52482055, 27484183, 35287079, 25233463, 9622599, 5209687, 375, 147308552, 116527128, 56918056, 16464440, 8234568, 2392, 172482569, 30044185, 59443241, 29752377, 14860873, 7769, 2557545, 2041, 64700426, 74072090, 73869354, 14294074, 14336330, 25434, 1801642, 6458, 199409675, 154877979, 76886059, 15390779, 16923723, 83035, 3873131, 2217723, 207081484, 69941276, 732204, 30065212, 14636620, 269660, 5301612, 2048092, 91349005, 54190109, 80381997, 11153469, 5673549, 871005, 233965, 2059133, 88104974, 156579870, 39121966, 11289662, 5679438, 2799454, 714350, 699966, 42598415, 82346015, 7569455, 44105791, 26185807, 8958047, 6331503, 3168895]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.4, G.7, G.10, G.11, G.12, G.13, G.14, G.15, G.16]); AssignNames(~G, ["a", "a2", "a4", "b", "b2", "b4", "c", "c2", "c4", "d", "e", "f", "g", "h", "i", "j"]);
gap:G := PcGroupCode(499374196723978425911574054482063250058198293302729003209024818092534050334197520205844896619479935938846404617029536122245712628904436958961647297734333311490026798096660070477068431521795867787030293247936954394799315265688987661399804721923796709360144764707682670524647937733669318904317222630505351824928298013109435811863571061722361359769556165431860338517385692894760441658744858704218596034653643623027269210253864420872365157096529441142652337332389090962893794881565187897742133838853132038547019773786108447994951525319682178274086660676604227770727078486292117426465153098539781195227398399,1679616); a := G.1; b := G.4; c := G.7; d := G.10; e := G.11; f := G.12; g := G.13; h := G.14; i := G.15; j := G.16;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(499374196723978425911574054482063250058198293302729003209024818092534050334197520205844896619479935938846404617029536122245712628904436958961647297734333311490026798096660070477068431521795867787030293247936954394799315265688987661399804721923796709360144764707682670524647937733669318904317222630505351824928298013109435811863571061722361359769556165431860338517385692894760441658744858704218596034653643623027269210253864420872365157096529441142652337332389090962893794881565187897742133838853132038547019773786108447994951525319682178274086660676604227770727078486292117426465153098539781195227398399,1679616)'); a = G.1; b = G.4; c = G.7; d = G.10; e = G.11; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(499374196723978425911574054482063250058198293302729003209024818092534050334197520205844896619479935938846404617029536122245712628904436958961647297734333311490026798096660070477068431521795867787030293247936954394799315265688987661399804721923796709360144764707682670524647937733669318904317222630505351824928298013109435811863571061722361359769556165431860338517385692894760441658744858704218596034653643623027269210253864420872365157096529441142652337332389090962893794881565187897742133838853132038547019773786108447994951525319682178274086660676604227770727078486292117426465153098539781195227398399,1679616)'); a = G.1; b = G.4; c = G.7; d = G.10; e = G.11; f = G.12; g = G.13; h = G.14; i = G.15; j = G.16;
|
| Permutation group: | Degree $36$
$\langle(1,12,21,29,2,18,22,36,5,10,20,35,4,13,25,28)(3,15,26,31,8,14,27,34,6,16,24,33,7,17,23,30) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,12,21,29,2,18,22,36,5,10,20,35,4,13,25,28)(3,15,26,31,8,14,27,34,6,16,24,33,7,17,23,30)(9,11,19,32), (1,15,26,30,2,13,19,36,5,11,23,28,4,10,21,31)(3,14,24,33,8,18,27,32,6,12,25,34,7,17,22,35)(9,16,20,29) >;
gap:G := Group( (1,12,21,29,2,18,22,36,5,10,20,35,4,13,25,28)(3,15,26,31,8,14,27,34,6,16,24,33,7,17,23,30)(9,11,19,32), (1,15,26,30,2,13,19,36,5,11,23,28,4,10,21,31)(3,14,24,33,8,18,27,32,6,12,25,34,7,17,22,35)(9,16,20,29) );
sage:G = PermutationGroup(['(1,12,21,29,2,18,22,36,5,10,20,35,4,13,25,28)(3,15,26,31,8,14,27,34,6,16,24,33,7,17,23,30)(9,11,19,32)', '(1,15,26,30,2,13,19,36,5,11,23,28,4,10,21,31)(3,14,24,33,8,18,27,32,6,12,25,34,7,17,22,35)(9,16,20,29)'])
|
| Transitive group: |
36T41142 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
Elements of the group are displayed as permutations of degree 36.
Subgroup data has not been computed.
The $78 \times 78$ character table is not available for this group.
The $59 \times 59$ rational character table is not available for this group.