Properties

Label 165888.bl
Order \( 2^{11} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{15} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $16$
Trans deg. $32$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 16 | (1,2,3,4,6,8,5,7)(9,10,11,13,14,15,16,12), (2,4)(3,5,6)(7,8)(10,12,13,15)(14,16) >;
 
Copy content gap:G := Group( (1,2,3,4,6,8,5,7)(9,10,11,13,14,15,16,12), (2,4)(3,5,6)(7,8)(10,12,13,15)(14,16) );
 
Copy content sage:G = PermutationGroup(['(1,2,3,4,6,8,5,7)(9,10,11,13,14,15,16,12)', '(2,4)(3,5,6)(7,8)(10,12,13,15)(14,16)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1461173525311388102517760004749526453351223536495825717420359825035625343075735773968313254591660823224126751548524283630547951592800011914023187171000151184862963532078113075059384917809441215186999091611219686631287675769895264331691343370338629534029408449812180424758907816475865404820788987679628751990169136805345965547916637755247894903203924404986130359726809686274475314527168800774967477012837606426898565792,165888)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 

Group information

Description:$A_4^2.(C_2\times A_4^2:C_4)$
Order: \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^8.S_3\wr D_4$, of order \(2654208\)\(\medspace = 2^{15} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 11, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 2703 6560 43632 23136 62208 27648 165888
Conjugacy classes   1 16 12 27 36 12 18 122
Divisions 1 16 12 25 36 6 18 114
Autjugacy classes 1 9 5 12 13 2 6 48

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 6 8 9 12 18 24 36 54 72 81 108 162
Irr. complex chars.   8 0 8 8 8 16 20 8 8 16 8 2 8 4 0 122
Irr. rational chars. 4 2 8 8 8 8 20 12 8 16 8 2 4 4 2 114

Minimal presentations

Permutation degree:$16$
Transitive degree:$32$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 18 18
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j \mid c^{6}=d^{6}=e^{6}=f^{2}=g^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([15, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 30, 822976, 6291542, 1474127, 122, 4423683, 2812818, 349968, 2775604, 5949919, 981034, 1219324, 214, 5184005, 120980, 2195, 12839406, 6569661, 3558906, 688956, 46056, 306, 3116167, 656662, 328357, 159892, 234787, 19319048, 6940103, 4947518, 976913, 456908, 75413, 93248, 22388, 398, 17515209, 7257624, 5130039, 226854, 529269, 7299, 30714, 26955730, 7698265, 59500, 9025, 18940, 9055, 466571, 2566121, 71381, 29276, 12011, 5006, 22758852, 11877867, 189612, 31677, 105402, 21177, 25872, 13602, 28319773, 13608028, 21553, 15898, 7695014, 1749629, 218804, 73019, 13634, 17699]); a,b,c,d,e,f,g,h,i,j := Explode([G.1, G.3, G.5, G.7, G.9, G.11, G.12, G.13, G.14, G.15]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "g", "h", "i", "j"]);
 
Copy content gap:G := PcGroupCode(1461173525311388102517760004749526453351223536495825717420359825035625343075735773968313254591660823224126751548524283630547951592800011914023187171000151184862963532078113075059384917809441215186999091611219686631287675769895264331691343370338629534029408449812180424758907816475865404820788987679628751990169136805345965547916637755247894903203924404986130359726809686274475314527168800774967477012837606426898565792,165888); a := G.1; b := G.3; c := G.5; d := G.7; e := G.9; f := G.11; g := G.12; h := G.13; i := G.14; j := G.15;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1461173525311388102517760004749526453351223536495825717420359825035625343075735773968313254591660823224126751548524283630547951592800011914023187171000151184862963532078113075059384917809441215186999091611219686631287675769895264331691343370338629534029408449812180424758907816475865404820788987679628751990169136805345965547916637755247894903203924404986130359726809686274475314527168800774967477012837606426898565792,165888)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(1461173525311388102517760004749526453351223536495825717420359825035625343075735773968313254591660823224126751548524283630547951592800011914023187171000151184862963532078113075059384917809441215186999091611219686631287675769895264331691343370338629534029408449812180424758907816475865404820788987679628751990169136805345965547916637755247894903203924404986130359726809686274475314527168800774967477012837606426898565792,165888)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15;
 
Permutation group:Degree $16$ $\langle(1,2,3,4,6,8,5,7)(9,10,11,13,14,15,16,12), (2,4)(3,5,6)(7,8)(10,12,13,15)(14,16)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 16 | (1,2,3,4,6,8,5,7)(9,10,11,13,14,15,16,12), (2,4)(3,5,6)(7,8)(10,12,13,15)(14,16) >;
 
Copy content gap:G := Group( (1,2,3,4,6,8,5,7)(9,10,11,13,14,15,16,12), (2,4)(3,5,6)(7,8)(10,12,13,15)(14,16) );
 
Copy content sage:G = PermutationGroup(['(1,2,3,4,6,8,5,7)(9,10,11,13,14,15,16,12)', '(2,4)(3,5,6)(7,8)(10,12,13,15)(14,16)'])
 
Transitive group: 36T23377 36T23378 36T23379 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(A_4^2.A_4^2.C_2)$ . $C_4$ $A_4^2$ . $(C_2\times A_4^2:C_4)$ $(C_2^8.C_3^3.D_6)$ . $C_2$ $(A_4^2:(A_4^2:C_4))$ . $C_2$ all 11

Elements of the group are displayed as permutations of degree 16.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2} \times C_{6}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 20 normal subgroups (6 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $A_4^2.(C_2\times A_4^2:C_4)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^8.C_3^4$ $G/G' \simeq$ $C_2\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $A_4^2.(C_2\times A_4^2:C_4)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^8$ $G/\operatorname{Fit} \simeq$ $C_3^4:(C_2\times C_4)$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $A_4^2.(C_2\times A_4^2:C_4)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^8$ $G/\operatorname{soc} \simeq$ $C_3^4:(C_2\times C_4)$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^6.C_2^4.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4$

Subgroup diagram and profile

Series

Derived series $A_4^2.(C_2\times A_4^2:C_4)$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $A_4^2.(C_2\times A_4^2:C_4)$ $\rhd$ $C_2^8.C_3^3.D_6$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $A_4^2.C_2^4$ $\rhd$ $C_2^8$ $\rhd$ $C_2^4$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $A_4^2.(C_2\times A_4^2:C_4)$ $\rhd$ $C_2^8.C_3^4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $122 \times 122$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $114 \times 114$ rational character table.