Properties

Label 16384.lp
Order \( 2^{14} \)
Exponent \( 2^{3} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ 4
$\card{\Aut(G)}$ \( 2^{24} \)
$\card{\mathrm{Out}(G)}$ \( 2^{12} \)
Perm deg. not computed
Trans deg. not computed
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 64 | (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,64)(32,63), (1,4)(2,64)(3,6)(5,8)(7,10)(9,12)(11,14)(13,16)(15,18)(17,20)(19,22)(21,24)(23,26)(25,28)(27,30)(29,32)(31,34)(33,36)(35,38)(37,40)(39,42)(41,44)(43,46)(45,48)(47,50)(49,52)(51,54)(53,56)(55,58)(57,60)(59,62)(61,63), (1,17,4,20)(5,21,8,24)(9,25,12,28)(13,29,16,32)(31,34)(33,52,36,49)(35,38)(37,56,40,53)(39,42)(41,60,44,57)(43,46)(45,63,48,61)(47,50)(51,54)(55,58)(59,62), (3,35)(5,37)(6,38)(8,40)(11,43)(13,45)(14,46)(16,48)(19,51)(21,53)(22,54)(24,56)(27,59)(29,61)(30,62)(32,63), (1,4)(5,8)(9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36)(37,40)(41,44)(45,48)(49,52)(53,56)(57,60)(61,63), (3,6)(5,8)(11,14)(13,16)(19,22)(21,24)(27,30)(29,32)(35,38)(37,40)(43,46)(45,48)(51,54)(53,56)(59,62)(61,63), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,64)(16,32)(31,47)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(48,63), (3,11)(5,13)(6,14)(8,16)(19,27)(21,29)(22,30)(24,32)(35,43)(37,45)(38,46)(40,48)(51,59)(53,61)(54,62)(56,63), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,64)(8,16)(15,23)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(24,32)(31,39)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(40,48)(47,55)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(56,63), (1,5,25,32,4,8,28,29)(3,19,6,22)(7,10)(9,16,17,21,12,13,20,24)(11,30,14,27)(23,26)(31,39,34,42)(33,45,60,53,36,48,57,56)(35,59)(37,49,61,41,40,52,63,44)(38,62)(43,54)(46,51)(47,55,50,58), (1,33)(4,36)(5,37)(8,40)(9,41)(12,44)(13,45)(16,48)(17,49)(20,52)(21,53)(24,56)(25,57)(28,60)(29,61)(32,63), (1,5,9,13)(2,6,10,14)(3,7,11,64)(4,8,12,16)(15,30,23,22)(17,32,25,24)(18,27,26,19)(20,29,28,21)(31,35,39,43)(33,37,41,45)(34,38,42,46)(36,40,44,48)(47,62,55,54)(49,63,57,56)(50,59,58,51)(52,61,60,53), (1,9)(3,6)(4,12)(5,16)(8,13)(11,14)(17,25)(19,22)(20,28)(21,32)(24,29)(27,30)(33,41)(35,38)(36,44)(37,48)(40,45)(43,46)(49,57)(51,54)(52,60)(53,63)(56,61)(59,62), (1,31,33,64)(2,4,34,36)(3,5,35,37)(6,8,38,40)(7,9,39,41)(10,12,42,44)(11,13,43,45)(14,16,46,48)(15,57,47,25)(17,23,49,55)(18,60,50,28)(19,61,51,29)(20,26,52,58)(21,27,53,59)(22,63,54,32)(24,30,56,62) >;
 
Copy content gap:G := Group( (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,64)(32,63), (1,4)(2,64)(3,6)(5,8)(7,10)(9,12)(11,14)(13,16)(15,18)(17,20)(19,22)(21,24)(23,26)(25,28)(27,30)(29,32)(31,34)(33,36)(35,38)(37,40)(39,42)(41,44)(43,46)(45,48)(47,50)(49,52)(51,54)(53,56)(55,58)(57,60)(59,62)(61,63), (1,17,4,20)(5,21,8,24)(9,25,12,28)(13,29,16,32)(31,34)(33,52,36,49)(35,38)(37,56,40,53)(39,42)(41,60,44,57)(43,46)(45,63,48,61)(47,50)(51,54)(55,58)(59,62), (3,35)(5,37)(6,38)(8,40)(11,43)(13,45)(14,46)(16,48)(19,51)(21,53)(22,54)(24,56)(27,59)(29,61)(30,62)(32,63), (1,4)(5,8)(9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36)(37,40)(41,44)(45,48)(49,52)(53,56)(57,60)(61,63), (3,6)(5,8)(11,14)(13,16)(19,22)(21,24)(27,30)(29,32)(35,38)(37,40)(43,46)(45,48)(51,54)(53,56)(59,62)(61,63), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,64)(16,32)(31,47)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(48,63), (3,11)(5,13)(6,14)(8,16)(19,27)(21,29)(22,30)(24,32)(35,43)(37,45)(38,46)(40,48)(51,59)(53,61)(54,62)(56,63), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,64)(8,16)(15,23)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(24,32)(31,39)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(40,48)(47,55)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(56,63), (1,5,25,32,4,8,28,29)(3,19,6,22)(7,10)(9,16,17,21,12,13,20,24)(11,30,14,27)(23,26)(31,39,34,42)(33,45,60,53,36,48,57,56)(35,59)(37,49,61,41,40,52,63,44)(38,62)(43,54)(46,51)(47,55,50,58), (1,33)(4,36)(5,37)(8,40)(9,41)(12,44)(13,45)(16,48)(17,49)(20,52)(21,53)(24,56)(25,57)(28,60)(29,61)(32,63), (1,5,9,13)(2,6,10,14)(3,7,11,64)(4,8,12,16)(15,30,23,22)(17,32,25,24)(18,27,26,19)(20,29,28,21)(31,35,39,43)(33,37,41,45)(34,38,42,46)(36,40,44,48)(47,62,55,54)(49,63,57,56)(50,59,58,51)(52,61,60,53), (1,9)(3,6)(4,12)(5,16)(8,13)(11,14)(17,25)(19,22)(20,28)(21,32)(24,29)(27,30)(33,41)(35,38)(36,44)(37,48)(40,45)(43,46)(49,57)(51,54)(52,60)(53,63)(56,61)(59,62), (1,31,33,64)(2,4,34,36)(3,5,35,37)(6,8,38,40)(7,9,39,41)(10,12,42,44)(11,13,43,45)(14,16,46,48)(15,57,47,25)(17,23,49,55)(18,60,50,28)(19,61,51,29)(20,26,52,58)(21,27,53,59)(22,63,54,32)(24,30,56,62) );
 
Copy content sage:G = PermutationGroup(['(1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,64)(32,63)', '(1,4)(2,64)(3,6)(5,8)(7,10)(9,12)(11,14)(13,16)(15,18)(17,20)(19,22)(21,24)(23,26)(25,28)(27,30)(29,32)(31,34)(33,36)(35,38)(37,40)(39,42)(41,44)(43,46)(45,48)(47,50)(49,52)(51,54)(53,56)(55,58)(57,60)(59,62)(61,63)', '(1,17,4,20)(5,21,8,24)(9,25,12,28)(13,29,16,32)(31,34)(33,52,36,49)(35,38)(37,56,40,53)(39,42)(41,60,44,57)(43,46)(45,63,48,61)(47,50)(51,54)(55,58)(59,62)', '(3,35)(5,37)(6,38)(8,40)(11,43)(13,45)(14,46)(16,48)(19,51)(21,53)(22,54)(24,56)(27,59)(29,61)(30,62)(32,63)', '(1,4)(5,8)(9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36)(37,40)(41,44)(45,48)(49,52)(53,56)(57,60)(61,63)', '(3,6)(5,8)(11,14)(13,16)(19,22)(21,24)(27,30)(29,32)(35,38)(37,40)(43,46)(45,48)(51,54)(53,56)(59,62)(61,63)', '(1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,64)(16,32)(31,47)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(48,63)', '(3,11)(5,13)(6,14)(8,16)(19,27)(21,29)(22,30)(24,32)(35,43)(37,45)(38,46)(40,48)(51,59)(53,61)(54,62)(56,63)', '(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,64)(8,16)(15,23)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(24,32)(31,39)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(40,48)(47,55)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(56,63)', '(1,5,25,32,4,8,28,29)(3,19,6,22)(7,10)(9,16,17,21,12,13,20,24)(11,30,14,27)(23,26)(31,39,34,42)(33,45,60,53,36,48,57,56)(35,59)(37,49,61,41,40,52,63,44)(38,62)(43,54)(46,51)(47,55,50,58)', '(1,33)(4,36)(5,37)(8,40)(9,41)(12,44)(13,45)(16,48)(17,49)(20,52)(21,53)(24,56)(25,57)(28,60)(29,61)(32,63)', '(1,5,9,13)(2,6,10,14)(3,7,11,64)(4,8,12,16)(15,30,23,22)(17,32,25,24)(18,27,26,19)(20,29,28,21)(31,35,39,43)(33,37,41,45)(34,38,42,46)(36,40,44,48)(47,62,55,54)(49,63,57,56)(50,59,58,51)(52,61,60,53)', '(1,9)(3,6)(4,12)(5,16)(8,13)(11,14)(17,25)(19,22)(20,28)(21,32)(24,29)(27,30)(33,41)(35,38)(36,44)(37,48)(40,45)(43,46)(49,57)(51,54)(52,60)(53,63)(56,61)(59,62)', '(1,31,33,64)(2,4,34,36)(3,5,35,37)(6,8,38,40)(7,9,39,41)(10,12,42,44)(11,13,43,45)(14,16,46,48)(15,57,47,25)(17,23,49,55)(18,60,50,28)(19,61,51,29)(20,26,52,58)(21,27,53,59)(22,63,54,32)(24,30,56,62)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(82197148452657400971886806945152727272939203879439506285635929985579627272415298960047055083090802047838748006928325876142494570925571968295788642689081440801999295741287918591345711311898104077611192291409975,16384)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14;
 

Group information

Description:$C_2^4.C_2^2\wr C_4$
Order: \(16384\)\(\medspace = 2^{14} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(8\)\(\medspace = 2^{3} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(16777216\)\(\medspace = 2^{24} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 14
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Nilpotency class:$6$
Copy content comment:Nilpotency class of the group
 
Copy content magma:NilpotencyClass(G);
 
Copy content gap:NilpotencyClassOfGroup(G);
 
Copy content sage_gap:G.NilpotencyClassOfGroup()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 8
Elements 1 1535 8704 6144 16384
Conjugacy classes   1 131 136 24 292
Divisions 1 131 124 8 264
Autjugacy classes 1 47 25 2 75

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none not computed none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k \mid b^{4}=d^{4}=e^{2}=f^{2}=g^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 28, 205199, 4202, 306700, 114, 32707, 894884, 29698, 86552, 18260, 1234469, 283603, 11457, 21887, 10981, 243, 206982, 304212, 152130, 997255, 827925, 297507, 15743, 7693, 1612808, 403222, 137124, 18208, 9150, 358409, 465943, 89637, 40385, 29199, 788490, 551960, 69058, 688139, 372748, 1354765, 602153, 150597, 62803]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.3, G.5, G.6, G.8, G.9, G.10, G.11, G.12, G.13, G.14]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "d2", "e", "f", "g", "h", "i", "j", "k"]);
 
Copy content gap:G := PcGroupCode(82197148452657400971886806945152727272939203879439506285635929985579627272415298960047055083090802047838748006928325876142494570925571968295788642689081440801999295741287918591345711311898104077611192291409975,16384); a := G.1; b := G.3; c := G.5; d := G.6; e := G.8; f := G.9; g := G.10; h := G.11; i := G.12; j := G.13; k := G.14;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(82197148452657400971886806945152727272939203879439506285635929985579627272415298960047055083090802047838748006928325876142494570925571968295788642689081440801999295741287918591345711311898104077611192291409975,16384)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(82197148452657400971886806945152727272939203879439506285635929985579627272415298960047055083090802047838748006928325876142494570925571968295788642689081440801999295741287918591345711311898104077611192291409975,16384)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14;
 
Permutation group:Degree $64$ $\langle(1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 64 | (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,64)(32,63), (1,4)(2,64)(3,6)(5,8)(7,10)(9,12)(11,14)(13,16)(15,18)(17,20)(19,22)(21,24)(23,26)(25,28)(27,30)(29,32)(31,34)(33,36)(35,38)(37,40)(39,42)(41,44)(43,46)(45,48)(47,50)(49,52)(51,54)(53,56)(55,58)(57,60)(59,62)(61,63), (1,17,4,20)(5,21,8,24)(9,25,12,28)(13,29,16,32)(31,34)(33,52,36,49)(35,38)(37,56,40,53)(39,42)(41,60,44,57)(43,46)(45,63,48,61)(47,50)(51,54)(55,58)(59,62), (3,35)(5,37)(6,38)(8,40)(11,43)(13,45)(14,46)(16,48)(19,51)(21,53)(22,54)(24,56)(27,59)(29,61)(30,62)(32,63), (1,4)(5,8)(9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36)(37,40)(41,44)(45,48)(49,52)(53,56)(57,60)(61,63), (3,6)(5,8)(11,14)(13,16)(19,22)(21,24)(27,30)(29,32)(35,38)(37,40)(43,46)(45,48)(51,54)(53,56)(59,62)(61,63), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,64)(16,32)(31,47)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(48,63), (3,11)(5,13)(6,14)(8,16)(19,27)(21,29)(22,30)(24,32)(35,43)(37,45)(38,46)(40,48)(51,59)(53,61)(54,62)(56,63), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,64)(8,16)(15,23)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(24,32)(31,39)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(40,48)(47,55)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(56,63), (1,5,25,32,4,8,28,29)(3,19,6,22)(7,10)(9,16,17,21,12,13,20,24)(11,30,14,27)(23,26)(31,39,34,42)(33,45,60,53,36,48,57,56)(35,59)(37,49,61,41,40,52,63,44)(38,62)(43,54)(46,51)(47,55,50,58), (1,33)(4,36)(5,37)(8,40)(9,41)(12,44)(13,45)(16,48)(17,49)(20,52)(21,53)(24,56)(25,57)(28,60)(29,61)(32,63), (1,5,9,13)(2,6,10,14)(3,7,11,64)(4,8,12,16)(15,30,23,22)(17,32,25,24)(18,27,26,19)(20,29,28,21)(31,35,39,43)(33,37,41,45)(34,38,42,46)(36,40,44,48)(47,62,55,54)(49,63,57,56)(50,59,58,51)(52,61,60,53), (1,9)(3,6)(4,12)(5,16)(8,13)(11,14)(17,25)(19,22)(20,28)(21,32)(24,29)(27,30)(33,41)(35,38)(36,44)(37,48)(40,45)(43,46)(49,57)(51,54)(52,60)(53,63)(56,61)(59,62), (1,31,33,64)(2,4,34,36)(3,5,35,37)(6,8,38,40)(7,9,39,41)(10,12,42,44)(11,13,43,45)(14,16,46,48)(15,57,47,25)(17,23,49,55)(18,60,50,28)(19,61,51,29)(20,26,52,58)(21,27,53,59)(22,63,54,32)(24,30,56,62) >;
 
Copy content gap:G := Group( (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,64)(32,63), (1,4)(2,64)(3,6)(5,8)(7,10)(9,12)(11,14)(13,16)(15,18)(17,20)(19,22)(21,24)(23,26)(25,28)(27,30)(29,32)(31,34)(33,36)(35,38)(37,40)(39,42)(41,44)(43,46)(45,48)(47,50)(49,52)(51,54)(53,56)(55,58)(57,60)(59,62)(61,63), (1,17,4,20)(5,21,8,24)(9,25,12,28)(13,29,16,32)(31,34)(33,52,36,49)(35,38)(37,56,40,53)(39,42)(41,60,44,57)(43,46)(45,63,48,61)(47,50)(51,54)(55,58)(59,62), (3,35)(5,37)(6,38)(8,40)(11,43)(13,45)(14,46)(16,48)(19,51)(21,53)(22,54)(24,56)(27,59)(29,61)(30,62)(32,63), (1,4)(5,8)(9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36)(37,40)(41,44)(45,48)(49,52)(53,56)(57,60)(61,63), (3,6)(5,8)(11,14)(13,16)(19,22)(21,24)(27,30)(29,32)(35,38)(37,40)(43,46)(45,48)(51,54)(53,56)(59,62)(61,63), (1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,64)(16,32)(31,47)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(48,63), (3,11)(5,13)(6,14)(8,16)(19,27)(21,29)(22,30)(24,32)(35,43)(37,45)(38,46)(40,48)(51,59)(53,61)(54,62)(56,63), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,64)(8,16)(15,23)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(24,32)(31,39)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(40,48)(47,55)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(56,63), (1,5,25,32,4,8,28,29)(3,19,6,22)(7,10)(9,16,17,21,12,13,20,24)(11,30,14,27)(23,26)(31,39,34,42)(33,45,60,53,36,48,57,56)(35,59)(37,49,61,41,40,52,63,44)(38,62)(43,54)(46,51)(47,55,50,58), (1,33)(4,36)(5,37)(8,40)(9,41)(12,44)(13,45)(16,48)(17,49)(20,52)(21,53)(24,56)(25,57)(28,60)(29,61)(32,63), (1,5,9,13)(2,6,10,14)(3,7,11,64)(4,8,12,16)(15,30,23,22)(17,32,25,24)(18,27,26,19)(20,29,28,21)(31,35,39,43)(33,37,41,45)(34,38,42,46)(36,40,44,48)(47,62,55,54)(49,63,57,56)(50,59,58,51)(52,61,60,53), (1,9)(3,6)(4,12)(5,16)(8,13)(11,14)(17,25)(19,22)(20,28)(21,32)(24,29)(27,30)(33,41)(35,38)(36,44)(37,48)(40,45)(43,46)(49,57)(51,54)(52,60)(53,63)(56,61)(59,62), (1,31,33,64)(2,4,34,36)(3,5,35,37)(6,8,38,40)(7,9,39,41)(10,12,42,44)(11,13,43,45)(14,16,46,48)(15,57,47,25)(17,23,49,55)(18,60,50,28)(19,61,51,29)(20,26,52,58)(21,27,53,59)(22,63,54,32)(24,30,56,62) );
 
Copy content sage:G = PermutationGroup(['(1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,53)(22,54)(23,55)(24,56)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,64)(32,63)', '(1,4)(2,64)(3,6)(5,8)(7,10)(9,12)(11,14)(13,16)(15,18)(17,20)(19,22)(21,24)(23,26)(25,28)(27,30)(29,32)(31,34)(33,36)(35,38)(37,40)(39,42)(41,44)(43,46)(45,48)(47,50)(49,52)(51,54)(53,56)(55,58)(57,60)(59,62)(61,63)', '(1,17,4,20)(5,21,8,24)(9,25,12,28)(13,29,16,32)(31,34)(33,52,36,49)(35,38)(37,56,40,53)(39,42)(41,60,44,57)(43,46)(45,63,48,61)(47,50)(51,54)(55,58)(59,62)', '(3,35)(5,37)(6,38)(8,40)(11,43)(13,45)(14,46)(16,48)(19,51)(21,53)(22,54)(24,56)(27,59)(29,61)(30,62)(32,63)', '(1,4)(5,8)(9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36)(37,40)(41,44)(45,48)(49,52)(53,56)(57,60)(61,63)', '(3,6)(5,8)(11,14)(13,16)(19,22)(21,24)(27,30)(29,32)(35,38)(37,40)(43,46)(45,48)(51,54)(53,56)(59,62)(61,63)', '(1,17)(2,18)(3,19)(4,20)(5,21)(6,22)(7,23)(8,24)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,64)(16,32)(31,47)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(41,57)(42,58)(43,59)(44,60)(45,61)(46,62)(48,63)', '(3,11)(5,13)(6,14)(8,16)(19,27)(21,29)(22,30)(24,32)(35,43)(37,45)(38,46)(40,48)(51,59)(53,61)(54,62)(56,63)', '(1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,64)(8,16)(15,23)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(24,32)(31,39)(33,41)(34,42)(35,43)(36,44)(37,45)(38,46)(40,48)(47,55)(49,57)(50,58)(51,59)(52,60)(53,61)(54,62)(56,63)', '(1,5,25,32,4,8,28,29)(3,19,6,22)(7,10)(9,16,17,21,12,13,20,24)(11,30,14,27)(23,26)(31,39,34,42)(33,45,60,53,36,48,57,56)(35,59)(37,49,61,41,40,52,63,44)(38,62)(43,54)(46,51)(47,55,50,58)', '(1,33)(4,36)(5,37)(8,40)(9,41)(12,44)(13,45)(16,48)(17,49)(20,52)(21,53)(24,56)(25,57)(28,60)(29,61)(32,63)', '(1,5,9,13)(2,6,10,14)(3,7,11,64)(4,8,12,16)(15,30,23,22)(17,32,25,24)(18,27,26,19)(20,29,28,21)(31,35,39,43)(33,37,41,45)(34,38,42,46)(36,40,44,48)(47,62,55,54)(49,63,57,56)(50,59,58,51)(52,61,60,53)', '(1,9)(3,6)(4,12)(5,16)(8,13)(11,14)(17,25)(19,22)(20,28)(21,32)(24,29)(27,30)(33,41)(35,38)(36,44)(37,48)(40,45)(43,46)(49,57)(51,54)(52,60)(53,63)(56,61)(59,62)', '(1,31,33,64)(2,4,34,36)(3,5,35,37)(6,8,38,40)(7,9,39,41)(10,12,42,44)(11,13,43,45)(14,16,46,48)(15,57,47,25)(17,23,49,55)(18,60,50,28)(19,61,51,29)(20,26,52,58)(21,27,53,59)(22,63,54,32)(24,30,56,62)'])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^8$ . $(D_4:D_4)$ $(C_2^9.D_4)$ . $C_4$ $C_2^8$ . $(C_2\wr C_4)$ (9) $(C_2^7.C_2^4)$ . $D_4$ (24) all 133
Aut. group: $\Aut(C_4^3.C_2)$

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{3} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{11}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 809 normal subgroups (191 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to 512.7532419
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: not computed
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^4.C_2^2\wr C_4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $292 \times 292$ character table is not available for this group.

Rational character table

The $264 \times 264$ rational character table is not available for this group.