Properties

Label 1632586752.gj
Order \( 2^{10} \cdot 3^{13} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,31,2,33,3,32)(4,28,5,30,6,29)(7,25,9,26,8,27)(10,24,11,23,12,22)(13,21,15,19,14,20)(16,17,18), (1,16,19,35,2,18,21,36)(3,17,20,34)(4,31,22,15)(5,33,24,13)(6,32,23,14)(7,10,26,30,8,11,27,29)(9,12,25,28), (1,31,2,32,3,33)(4,29)(5,28)(6,30)(7,25,9,27,8,26)(10,24,12,22,11,23)(13,19)(14,20)(15,21)(16,17)(34,36) >;
 
Copy content gap:G := Group( (1,31,2,33,3,32)(4,28,5,30,6,29)(7,25,9,26,8,27)(10,24,11,23,12,22)(13,21,15,19,14,20)(16,17,18), (1,16,19,35,2,18,21,36)(3,17,20,34)(4,31,22,15)(5,33,24,13)(6,32,23,14)(7,10,26,30,8,11,27,29)(9,12,25,28), (1,31,2,32,3,33)(4,29)(5,28)(6,30)(7,25,9,27,8,26)(10,24,12,22,11,23)(13,19)(14,20)(15,21)(16,17)(34,36) );
 
Copy content sage:G = PermutationGroup(['(1,31,2,33,3,32)(4,28,5,30,6,29)(7,25,9,26,8,27)(10,24,11,23,12,22)(13,21,15,19,14,20)(16,17,18)', '(1,16,19,35,2,18,21,36)(3,17,20,34)(4,31,22,15)(5,33,24,13)(6,32,23,14)(7,10,26,30,8,11,27,29)(9,12,25,28)', '(1,31,2,32,3,33)(4,29)(5,28)(6,30)(7,25,9,27,8,26)(10,24,12,22,11,23)(13,19)(14,20)(15,21)(16,17)(34,36)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(928792784323921272324242691906032081971166295765701305092752441274140316938104779926011201394595202817747021633141067010904441135861346235679266501772880809402011046276717937252431649930820860504644860473101094790553627394834534562108919610724532225020945244990509771550542094114254652723457251101215359792923967047234072582627646942032532420614934524093877333568656138790560012589291527995984941152941730078693668001427145046808499380636551106637717630824003929675522090103099737812864809063557299583197393483473569703650288811084614628169250042580195699272928914029473009637761968972401659213618139435428101097921892030283696027779487244557183567328539914961350389560409910877172682525302316082889781929139683688589675808847026467419129058919574028369400026824475610528398137445232233796042346110762161766915725446941284451867116753272062252272603744317613938482769955673565269963987723851093975634314536212953801428030700138508539985378890843736848717565602195274418439308904881610859655258566629573880462736246965865438591956724446144754506405985876202931417391050257181650486992483812343221032527759230574582954973472313197564816421447214235444804603057872162351878170509515484761060070810993121949928933798500597230726797582693716462407834149080581914820613564268929149985404834620370081954593268510921674358533949153325667322845966276427997682013327905713722717130819240912324814293425697581651703521947423690719262294628564637075404172611243664434758538109281163506101219424934939222651331658422995323849322511687896199193954488782552962272659323800464264329047980305737385544413326566021474477767328632075620088395849345036750733119139528846989926881041623807,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23;
 

Group information

Description:$C_3^{12}.C_2^6.C_6.D_4$
Order: \(1632586752\)\(\medspace = 2^{10} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(6530347008\)\(\medspace = 2^{12} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 10, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24
Elements 1 1012095 1371248 43670016 281891664 68024448 67184640 670586688 362797056 136048896 1632586752
Conjugacy classes   1 25 352 28 1024 4 16 156 18 4 1628
Divisions 1 25 352 28 1022 4 12 144 11 4 1603
Autjugacy classes 1 21 233 17 681 1 9 104 7 1 1075

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p \mid c^{2}=e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([23, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 16643837760, 32109198761, 116, 28369294250, 6460234896, 141065922819, 6630253082, 26660771221, 132611852794, 56423772297, 19358781500, 5244763, 326, 69914100965, 961606108, 15428251563, 12447823634, 341261976, 33260338278, 102875875019, 52558298551, 1512345203, 8546943342, 398302851, 466, 72891167239, 98277691422, 59074209845, 125914956, 10305904867, 28090, 318907644488, 33686701447, 67926840570, 1356396557, 10978471972, 3964387119, 2775126188, 1074705874, 606, 227897174409, 114639183392, 6825237175, 27666887758, 13833443941, 11164, 264794603974, 78020579241, 34302133724, 22391180143, 11343285462, 4946318117, 3798373144, 1324344357, 103838984, 746, 293322166283, 1133180962, 73330541625, 318032, 1364968039, 6819, 96002426064, 57641085485, 86814459595, 11083066592, 8502483727, 4337267838, 1565161121, 73033936, 5477324, 886, 38219102221, 1112868, 661022267, 13374015081, 556544, 278359, 46565, 7971, 166765728794, 102119053357, 36631158900, 2092521683, 16570863466, 106414689, 476182952, 14978695, 1714158, 44327224, 22805480, 1026, 129393745935, 91066540070, 92326495549, 4235120724, 14312927339, 3815554, 277572249, 318151, 53237, 18856611, 14253470247, 44876540222, 48646741, 231071724, 12161795, 169158, 28444, 5030, 57277145105, 208043425768, 4292415, 7919389549, 19315739, 3219465, 536791, 89717, 15243, 631130754450, 203941089833, 50400797248, 271849047, 271849070, 122332165, 1699304, 283470, 47536, 713487644179, 165455861802, 15996430145, 4111119448, 27787680111, 944317574, 512697757, 43519883, 13115769, 23129095, 105221, 330871754324, 50720425099, 55260733314, 651006809, 21905541616, 1261951623, 98903102, 107666700, 16901386, 23346584, 301734, 582629967765, 297712394540, 174898228099, 9107417178, 11883827057, 3281503240, 1163346783, 325920877, 70496171, 38460345, 2143759, 9082819990, 389501345805, 119194923332, 70872931675, 29183939826, 17054587721, 3761113984, 1011922190, 166597164, 17070070, 3847232]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.17, G.18, G.19, G.20, G.21, G.22, G.23]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "k", "l", "m", "n", "o", "p"]);
 
Copy content gap:G := PcGroupCode(928792784323921272324242691906032081971166295765701305092752441274140316938104779926011201394595202817747021633141067010904441135861346235679266501772880809402011046276717937252431649930820860504644860473101094790553627394834534562108919610724532225020945244990509771550542094114254652723457251101215359792923967047234072582627646942032532420614934524093877333568656138790560012589291527995984941152941730078693668001427145046808499380636551106637717630824003929675522090103099737812864809063557299583197393483473569703650288811084614628169250042580195699272928914029473009637761968972401659213618139435428101097921892030283696027779487244557183567328539914961350389560409910877172682525302316082889781929139683688589675808847026467419129058919574028369400026824475610528398137445232233796042346110762161766915725446941284451867116753272062252272603744317613938482769955673565269963987723851093975634314536212953801428030700138508539985378890843736848717565602195274418439308904881610859655258566629573880462736246965865438591956724446144754506405985876202931417391050257181650486992483812343221032527759230574582954973472313197564816421447214235444804603057872162351878170509515484761060070810993121949928933798500597230726797582693716462407834149080581914820613564268929149985404834620370081954593268510921674358533949153325667322845966276427997682013327905713722717130819240912324814293425697581651703521947423690719262294628564637075404172611243664434758538109281163506101219424934939222651331658422995323849322511687896199193954488782552962272659323800464264329047980305737385544413326566021474477767328632075620088395849345036750733119139528846989926881041623807,1632586752); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21; o := G.22; p := G.23;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(928792784323921272324242691906032081971166295765701305092752441274140316938104779926011201394595202817747021633141067010904441135861346235679266501772880809402011046276717937252431649930820860504644860473101094790553627394834534562108919610724532225020945244990509771550542094114254652723457251101215359792923967047234072582627646942032532420614934524093877333568656138790560012589291527995984941152941730078693668001427145046808499380636551106637717630824003929675522090103099737812864809063557299583197393483473569703650288811084614628169250042580195699272928914029473009637761968972401659213618139435428101097921892030283696027779487244557183567328539914961350389560409910877172682525302316082889781929139683688589675808847026467419129058919574028369400026824475610528398137445232233796042346110762161766915725446941284451867116753272062252272603744317613938482769955673565269963987723851093975634314536212953801428030700138508539985378890843736848717565602195274418439308904881610859655258566629573880462736246965865438591956724446144754506405985876202931417391050257181650486992483812343221032527759230574582954973472313197564816421447214235444804603057872162351878170509515484761060070810993121949928933798500597230726797582693716462407834149080581914820613564268929149985404834620370081954593268510921674358533949153325667322845966276427997682013327905713722717130819240912324814293425697581651703521947423690719262294628564637075404172611243664434758538109281163506101219424934939222651331658422995323849322511687896199193954488782552962272659323800464264329047980305737385544413326566021474477767328632075620088395849345036750733119139528846989926881041623807,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(928792784323921272324242691906032081971166295765701305092752441274140316938104779926011201394595202817747021633141067010904441135861346235679266501772880809402011046276717937252431649930820860504644860473101094790553627394834534562108919610724532225020945244990509771550542094114254652723457251101215359792923967047234072582627646942032532420614934524093877333568656138790560012589291527995984941152941730078693668001427145046808499380636551106637717630824003929675522090103099737812864809063557299583197393483473569703650288811084614628169250042580195699272928914029473009637761968972401659213618139435428101097921892030283696027779487244557183567328539914961350389560409910877172682525302316082889781929139683688589675808847026467419129058919574028369400026824475610528398137445232233796042346110762161766915725446941284451867116753272062252272603744317613938482769955673565269963987723851093975634314536212953801428030700138508539985378890843736848717565602195274418439308904881610859655258566629573880462736246965865438591956724446144754506405985876202931417391050257181650486992483812343221032527759230574582954973472313197564816421447214235444804603057872162351878170509515484761060070810993121949928933798500597230726797582693716462407834149080581914820613564268929149985404834620370081954593268510921674358533949153325667322845966276427997682013327905713722717130819240912324814293425697581651703521947423690719262294628564637075404172611243664434758538109281163506101219424934939222651331658422995323849322511687896199193954488782552962272659323800464264329047980305737385544413326566021474477767328632075620088395849345036750733119139528846989926881041623807,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23;
 
Permutation group:Degree $36$ $\langle(1,31,2,33,3,32)(4,28,5,30,6,29)(7,25,9,26,8,27)(10,24,11,23,12,22)(13,21,15,19,14,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,31,2,33,3,32)(4,28,5,30,6,29)(7,25,9,26,8,27)(10,24,11,23,12,22)(13,21,15,19,14,20)(16,17,18), (1,16,19,35,2,18,21,36)(3,17,20,34)(4,31,22,15)(5,33,24,13)(6,32,23,14)(7,10,26,30,8,11,27,29)(9,12,25,28), (1,31,2,32,3,33)(4,29)(5,28)(6,30)(7,25,9,27,8,26)(10,24,12,22,11,23)(13,19)(14,20)(15,21)(16,17)(34,36) >;
 
Copy content gap:G := Group( (1,31,2,33,3,32)(4,28,5,30,6,29)(7,25,9,26,8,27)(10,24,11,23,12,22)(13,21,15,19,14,20)(16,17,18), (1,16,19,35,2,18,21,36)(3,17,20,34)(4,31,22,15)(5,33,24,13)(6,32,23,14)(7,10,26,30,8,11,27,29)(9,12,25,28), (1,31,2,32,3,33)(4,29)(5,28)(6,30)(7,25,9,27,8,26)(10,24,12,22,11,23)(13,19)(14,20)(15,21)(16,17)(34,36) );
 
Copy content sage:G = PermutationGroup(['(1,31,2,33,3,32)(4,28,5,30,6,29)(7,25,9,26,8,27)(10,24,11,23,12,22)(13,21,15,19,14,20)(16,17,18)', '(1,16,19,35,2,18,21,36)(3,17,20,34)(4,31,22,15)(5,33,24,13)(6,32,23,14)(7,10,26,30,8,11,27,29)(9,12,25,28)', '(1,31,2,32,3,33)(4,29)(5,28)(6,30)(7,25,9,27,8,26)(10,24,12,22,11,23)(13,19)(14,20)(15,21)(16,17)(34,36)'])
 
Transitive group: 36T95500 36T95597 36T96198 36T97208 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^6.C_6)$ . $D_4$ $(C_3^{12}.C_2^6.C_6)$ . $D_4$ $(C_3^{12}.C_2^6.C_2^3)$ . $S_3$ $(C_3^{12}.C_2^5.C_2^2)$ . $S_4$ (3) all 31

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 62 normal subgroups (32 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^{12}.C_2^6.C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7:D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 8 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1628 \times 1628$ character table is not available for this group.

Rational character table

The $1603 \times 1603$ rational character table is not available for this group.