Properties

Label 1632586752.gi
Order \( 2^{10} \cdot 3^{13} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,13,3,14,2,15)(4,10)(5,11,6,12)(16,36,18,35,17,34)(19,31)(20,33)(21,32)(22,30)(23,28,24,29)(25,27,26), (1,35,14,11,27,24,2,36,15,12,25,23)(3,34,13,10,26,22)(4,19,16,31,29,8)(5,20,17,33,28,7,6,21,18,32,30,9) >;
 
Copy content gap:G := Group( (1,13,3,14,2,15)(4,10)(5,11,6,12)(16,36,18,35,17,34)(19,31)(20,33)(21,32)(22,30)(23,28,24,29)(25,27,26), (1,35,14,11,27,24,2,36,15,12,25,23)(3,34,13,10,26,22)(4,19,16,31,29,8)(5,20,17,33,28,7,6,21,18,32,30,9) );
 
Copy content sage:G = PermutationGroup(['(1,13,3,14,2,15)(4,10)(5,11,6,12)(16,36,18,35,17,34)(19,31)(20,33)(21,32)(22,30)(23,28,24,29)(25,27,26)', '(1,35,14,11,27,24,2,36,15,12,25,23)(3,34,13,10,26,22)(4,19,16,31,29,8)(5,20,17,33,28,7,6,21,18,32,30,9)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(623779020446007201914196864269325277895022406130503748766228097121664758879047750501892422761886594188503163156339439940837002946199567396663714090311092817377109522335750698625137997290590868245750328919338621758154756945188004687479496141670217973226976770444208708972473569632037687491061113077394146988870219286806189070891355632099873906676702478137026260179726286469692801184488588650936276720675521649910898503427697900608075419336632051663297765096750862242771722098860166349408119754580934167801903373490117411368269100307222308171107171705763026371689434451480767844668065219404045287621021311792452248312169252039846291834209227993263012351811209106960550364707952719846458655490692851622949314828829763758116602008217628087805691714887412010828587590873903118558222395655697398907762595156924518034014457458988004172977012246875015333668841983207584056098997802111871414257282456293402384985730401068107938823166623000369610755710478424794365228740819548103798289440336707321416147363449664971490125461278173328549376107393953289993386537700976737161920593462344554057839288152850006688061935083390349727408970764123043479145836696962954706626466744199438289519313375923649597881875318204268823813681991892093144450990032857540462049893031468883824751881237977239869578913521734951620116842793837879230990123304758280397176985309117579867459155285989543318979752591492968522288646325995512966419063650049369444524390985316666223842844394354339177287766193906505332150198382215940918396286899700640750596693184807227988654729983,1632586752)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23;
 

Group information

Description:$C_3^{12}.C_2^6.D_6:C_4$
Order: \(1632586752\)\(\medspace = 2^{10} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(6530347008\)\(\medspace = 2^{12} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 10, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24
Elements 1 965439 1371248 67604544 217693008 68024448 67184640 952762176 120932352 136048896 1632586752
Conjugacy classes   1 21 340 32 910 4 12 216 4 4 1544
Divisions 1 21 340 24 910 2 10 159 4 2 1473
Autjugacy classes 1 19 233 19 643 1 9 120 4 1 1050

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p \mid c^{6}=d^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([23, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 46, 10283973832, 3038, 33348520987, 735307104, 52247591203, 20556546634, 32185652649, 256, 114087499844, 35880445307, 6468686110, 107632395653, 52405804, 90507075, 79080698, 12977755, 21273491574, 118789394837, 62485870408, 28314828897, 4365035801, 1731, 466, 1271815, 137149231134, 35025592373, 34104167500, 17143653987, 1594, 4251624344, 134871964519, 31258069830, 37812707465, 15197145013, 6356, 606, 175127961609, 128856407072, 64428203575, 42624247758, 8649089381, 5667, 30784809274, 643753473, 4698771716, 15510488413, 12394740306, 7784, 746, 411447693323, 107869667362, 2861625, 39824, 25574548711, 6819, 233804556972, 116875346987, 62613929722, 28444345491, 28341017393, 323070, 54016, 9212, 886, 123661, 2225700, 556475, 30046546, 278313, 278359, 46565, 7971, 306027673934, 4471059277, 71734454880, 60443546753, 32628088411, 5328329192, 124398, 148009384, 13014380, 1026, 307401646095, 140112543782, 763720765, 43713312852, 34563290219, 2997015705, 185671, 83250677, 26319651, 579770846224, 225255, 675733, 56412, 12161795, 5030, 618098705, 161890348072, 166654858815, 10022, 38367188461, 19315739, 536791, 89717, 15243, 365183937426, 182531725673, 162113351680, 50483107095, 22816497278, 67962373, 67962396, 1120842274, 97129616, 31133922, 5184034, 623936463379, 1042882602, 89892228545, 14765690968, 65975151, 193155997, 16129643, 5365689, 5407181, 120185876, 201732330283, 94796593986, 90455714585, 25216570372, 9021450951, 615952670, 102658956, 2851928, 469818, 775347767061, 392299820, 99070412035, 70921300122, 25393217, 13716210952, 1916177631, 159390205, 140992091, 5292091, 754954233046, 21019700781, 110743196132, 40630932715, 50714286378, 12620230409, 6001602496, 369606158, 196420068, 10207882, 1009676]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p := Explode([G.1, G.3, G.4, G.6, G.7, G.9, G.11, G.13, G.15, G.17, G.18, G.19, G.20, G.21, G.22, G.23]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "k", "l", "m", "n", "o", "p"]);
 
Copy content gap:G := PcGroupCode(623779020446007201914196864269325277895022406130503748766228097121664758879047750501892422761886594188503163156339439940837002946199567396663714090311092817377109522335750698625137997290590868245750328919338621758154756945188004687479496141670217973226976770444208708972473569632037687491061113077394146988870219286806189070891355632099873906676702478137026260179726286469692801184488588650936276720675521649910898503427697900608075419336632051663297765096750862242771722098860166349408119754580934167801903373490117411368269100307222308171107171705763026371689434451480767844668065219404045287621021311792452248312169252039846291834209227993263012351811209106960550364707952719846458655490692851622949314828829763758116602008217628087805691714887412010828587590873903118558222395655697398907762595156924518034014457458988004172977012246875015333668841983207584056098997802111871414257282456293402384985730401068107938823166623000369610755710478424794365228740819548103798289440336707321416147363449664971490125461278173328549376107393953289993386537700976737161920593462344554057839288152850006688061935083390349727408970764123043479145836696962954706626466744199438289519313375923649597881875318204268823813681991892093144450990032857540462049893031468883824751881237977239869578913521734951620116842793837879230990123304758280397176985309117579867459155285989543318979752591492968522288646325995512966419063650049369444524390985316666223842844394354339177287766193906505332150198382215940918396286899700640750596693184807227988654729983,1632586752); a := G.1; b := G.3; c := G.4; d := G.6; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21; o := G.22; p := G.23;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(623779020446007201914196864269325277895022406130503748766228097121664758879047750501892422761886594188503163156339439940837002946199567396663714090311092817377109522335750698625137997290590868245750328919338621758154756945188004687479496141670217973226976770444208708972473569632037687491061113077394146988870219286806189070891355632099873906676702478137026260179726286469692801184488588650936276720675521649910898503427697900608075419336632051663297765096750862242771722098860166349408119754580934167801903373490117411368269100307222308171107171705763026371689434451480767844668065219404045287621021311792452248312169252039846291834209227993263012351811209106960550364707952719846458655490692851622949314828829763758116602008217628087805691714887412010828587590873903118558222395655697398907762595156924518034014457458988004172977012246875015333668841983207584056098997802111871414257282456293402384985730401068107938823166623000369610755710478424794365228740819548103798289440336707321416147363449664971490125461278173328549376107393953289993386537700976737161920593462344554057839288152850006688061935083390349727408970764123043479145836696962954706626466744199438289519313375923649597881875318204268823813681991892093144450990032857540462049893031468883824751881237977239869578913521734951620116842793837879230990123304758280397176985309117579867459155285989543318979752591492968522288646325995512966419063650049369444524390985316666223842844394354339177287766193906505332150198382215940918396286899700640750596693184807227988654729983,1632586752)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(623779020446007201914196864269325277895022406130503748766228097121664758879047750501892422761886594188503163156339439940837002946199567396663714090311092817377109522335750698625137997290590868245750328919338621758154756945188004687479496141670217973226976770444208708972473569632037687491061113077394146988870219286806189070891355632099873906676702478137026260179726286469692801184488588650936276720675521649910898503427697900608075419336632051663297765096750862242771722098860166349408119754580934167801903373490117411368269100307222308171107171705763026371689434451480767844668065219404045287621021311792452248312169252039846291834209227993263012351811209106960550364707952719846458655490692851622949314828829763758116602008217628087805691714887412010828587590873903118558222395655697398907762595156924518034014457458988004172977012246875015333668841983207584056098997802111871414257282456293402384985730401068107938823166623000369610755710478424794365228740819548103798289440336707321416147363449664971490125461278173328549376107393953289993386537700976737161920593462344554057839288152850006688061935083390349727408970764123043479145836696962954706626466744199438289519313375923649597881875318204268823813681991892093144450990032857540462049893031468883824751881237977239869578913521734951620116842793837879230990123304758280397176985309117579867459155285989543318979752591492968522288646325995512966419063650049369444524390985316666223842844394354339177287766193906505332150198382215940918396286899700640750596693184807227988654729983,1632586752)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23;
 
Permutation group:Degree $36$ $\langle(1,13,3,14,2,15)(4,10)(5,11,6,12)(16,36,18,35,17,34)(19,31)(20,33)(21,32) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,13,3,14,2,15)(4,10)(5,11,6,12)(16,36,18,35,17,34)(19,31)(20,33)(21,32)(22,30)(23,28,24,29)(25,27,26), (1,35,14,11,27,24,2,36,15,12,25,23)(3,34,13,10,26,22)(4,19,16,31,29,8)(5,20,17,33,28,7,6,21,18,32,30,9) >;
 
Copy content gap:G := Group( (1,13,3,14,2,15)(4,10)(5,11,6,12)(16,36,18,35,17,34)(19,31)(20,33)(21,32)(22,30)(23,28,24,29)(25,27,26), (1,35,14,11,27,24,2,36,15,12,25,23)(3,34,13,10,26,22)(4,19,16,31,29,8)(5,20,17,33,28,7,6,21,18,32,30,9) );
 
Copy content sage:G = PermutationGroup(['(1,13,3,14,2,15)(4,10)(5,11,6,12)(16,36,18,35,17,34)(19,31)(20,33)(21,32)(22,30)(23,28,24,29)(25,27,26)', '(1,35,14,11,27,24,2,36,15,12,25,23)(3,34,13,10,26,22)(4,19,16,31,29,8)(5,20,17,33,28,7,6,21,18,32,30,9)'])
 
Transitive group: 36T95499 36T95602 36T96576 36T97207 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^6.C_2)$ . $S_4$ (3) $(C_3^{12}.C_2^6.D_6)$ . $C_4$ $(C_3^{12}.C_2^6.D_6)$ . $C_4$ $(C_3^{12}.C_2^6.C_6)$ . $D_4$ all 30

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 44 normal subgroups (32 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^{12}.C_2^6.C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2.C_2^6.C_2^3$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1544 \times 1544$ character table is not available for this group.

Rational character table

The $1473 \times 1473$ rational character table is not available for this group.