| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p \mid c^{4}=d^{2}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([23, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 30995003136, 23187581837, 116, 107409846362, 6636019296, 21173389683, 37754674274, 26248097677, 256, 84936375244, 89970296487, 8525435120, 43417624037, 100286515468, 5966854539, 14277014738, 1938951157, 182630383494, 13196477729, 16825640254, 5528209419, 9095740822, 1925483163, 466, 185859901447, 87798205470, 11160751157, 1782562636, 9155111459, 1594, 45133336088, 20950619899, 21435659424, 6600477425, 10428294124, 949009839, 2609756372, 129307894, 606, 112574085129, 104361384992, 26469923575, 31000364238, 22181, 11164, 1375346787, 306182227306, 107827420041, 95636932832, 8373223311, 12633342582, 6144712325, 3168718888, 1252536885, 603449216, 187880800, 746, 361107095051, 2369378338, 1185643065, 29022053648, 5107978471, 79614, 164904675, 382132419564, 121662729275, 13339482604, 18498701913, 19773295880, 4787095375, 3890604894, 1627161761, 592935136, 149000889, 124570220, 14887774, 886, 433470320653, 175845261348, 33618654779, 4940974162, 1112937, 556544, 46565, 7971, 545844195374, 243337165057, 38322433770, 20755914923, 255752746, 3282755169, 62149832, 21685495, 533935998, 133055681, 1776304, 17183337, 18230780, 1026, 296611061775, 120834478118, 22163798077, 39124629588, 7630955, 3815554, 697904839, 53237, 9759651, 538145524240, 171203798055, 117268169534, 31971700981, 24323436, 12161795, 1023775832, 38850006, 14310892, 1398554, 89762618897, 57237122920, 30296374335, 53767511510, 77262445, 38631300, 1950874139, 543340425, 53744071, 30051725, 1535451, 648758481426, 268061239817, 79275939328, 11620032855, 244664174, 122332165, 2079644700, 1016224474, 1699304, 15821442, 264657945619, 358958269482, 75669396545, 34475535448, 772623471, 386311814, 568935563, 5365689, 28395175, 1178861, 437978403092, 296211488875, 147630101538, 63740281337, 2433763696, 1216881927, 1183079678, 603850668, 39644890, 37929320, 301734, 404168447253, 376343823020, 161396237443, 21261180954, 7648971377, 3824485768, 2832952479, 528118477, 23826779, 27300009, 2177155, 534317965078, 89656155789, 123769241348, 18311542459, 23989955442, 11994977801, 5479187488, 886003262, 219272868, 33130510, 2387192]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p := Explode([G.1, G.2, G.4, G.6, G.7, G.9, G.11, G.13, G.15, G.17, G.18, G.19, G.20, G.21, G.22, G.23]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "k", "l", "m", "n", "o", "p"]);
gap:G := PcGroupCode(321926012309988892868224895627108169491751094678782285263542581057550052026341888713838214453935393659428544618877797574622917622968045652536537671728189827381028646885804727500779102736812485547915949841173823119107009025621517696948876936842274097994176089580437861217985706818103514888305874117032303604711093104241272649991492480609074653485512325878838132314849645406244577823566835035426162219665241398936120017389048645403487254017480464077942177088891617254539834737772329362055535208701987925011130104503586245340676878039662929660796187829118483850877536603997580705471551140451743026501422531388989220813666176602664436320356870690946870526039632081209425465548304741204234031187998317393776095680706529342266030274552770971730067660913327077947823980709885369648810713851121107542609842508156457444477190541103435256405200759486710974707616054824084069559659144765314382797818721661179887774044043148874884818091427612724438116540564522974087829728156930483913020453894647940791014897880965127499275378281784932521199749816020707272844332555468996848892828967285870394917049259814292024247072100428579157556901751852148801379392072477148370402586238287873877651395201794027992208620080282212819245905009669660119305240226089365476959897573741347624956901234749022322134308073340043637212554808852182012395493199417584512672867795494505046092181381308812079762536166243488288154393835059451330644374376753595797180471858463045162399253695530831910855415832446197315854304619659146270466741656456002383952411661546772523146876802979331680823564148769714557208457715582317627850795529651488023265424627684142668371401527755018429609980858584437274756235258023129201035719216525254553069522629086506403856579655541007301265348676705228394187875264015103,1632586752); a := G.1; b := G.2; c := G.4; d := G.6; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21; o := G.22; p := G.23;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(321926012309988892868224895627108169491751094678782285263542581057550052026341888713838214453935393659428544618877797574622917622968045652536537671728189827381028646885804727500779102736812485547915949841173823119107009025621517696948876936842274097994176089580437861217985706818103514888305874117032303604711093104241272649991492480609074653485512325878838132314849645406244577823566835035426162219665241398936120017389048645403487254017480464077942177088891617254539834737772329362055535208701987925011130104503586245340676878039662929660796187829118483850877536603997580705471551140451743026501422531388989220813666176602664436320356870690946870526039632081209425465548304741204234031187998317393776095680706529342266030274552770971730067660913327077947823980709885369648810713851121107542609842508156457444477190541103435256405200759486710974707616054824084069559659144765314382797818721661179887774044043148874884818091427612724438116540564522974087829728156930483913020453894647940791014897880965127499275378281784932521199749816020707272844332555468996848892828967285870394917049259814292024247072100428579157556901751852148801379392072477148370402586238287873877651395201794027992208620080282212819245905009669660119305240226089365476959897573741347624956901234749022322134308073340043637212554808852182012395493199417584512672867795494505046092181381308812079762536166243488288154393835059451330644374376753595797180471858463045162399253695530831910855415832446197315854304619659146270466741656456002383952411661546772523146876802979331680823564148769714557208457715582317627850795529651488023265424627684142668371401527755018429609980858584437274756235258023129201035719216525254553069522629086506403856579655541007301265348676705228394187875264015103,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(321926012309988892868224895627108169491751094678782285263542581057550052026341888713838214453935393659428544618877797574622917622968045652536537671728189827381028646885804727500779102736812485547915949841173823119107009025621517696948876936842274097994176089580437861217985706818103514888305874117032303604711093104241272649991492480609074653485512325878838132314849645406244577823566835035426162219665241398936120017389048645403487254017480464077942177088891617254539834737772329362055535208701987925011130104503586245340676878039662929660796187829118483850877536603997580705471551140451743026501422531388989220813666176602664436320356870690946870526039632081209425465548304741204234031187998317393776095680706529342266030274552770971730067660913327077947823980709885369648810713851121107542609842508156457444477190541103435256405200759486710974707616054824084069559659144765314382797818721661179887774044043148874884818091427612724438116540564522974087829728156930483913020453894647940791014897880965127499275378281784932521199749816020707272844332555468996848892828967285870394917049259814292024247072100428579157556901751852148801379392072477148370402586238287873877651395201794027992208620080282212819245905009669660119305240226089365476959897573741347624956901234749022322134308073340043637212554808852182012395493199417584512672867795494505046092181381308812079762536166243488288154393835059451330644374376753595797180471858463045162399253695530831910855415832446197315854304619659146270466741656456002383952411661546772523146876802979331680823564148769714557208457715582317627850795529651488023265424627684142668371401527755018429609980858584437274756235258023129201035719216525254553069522629086506403856579655541007301265348676705228394187875264015103,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23;
|
| Permutation group: | Degree $36$
$\langle(1,24,10,36,26,14,3,22,11,34,25,13,2,23,12,35,27,15)(4,29,16,6,28,18)(5,30,17) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,24,10,36,26,14,3,22,11,34,25,13,2,23,12,35,27,15)(4,29,16,6,28,18)(5,30,17)(7,32,20,8,33,21)(9,31,19), (1,2,3)(4,9,5,8,6,7)(16,21,18,19,17,20)(22,27)(23,25)(24,26)(28,31,29,33,30,32)(34,35,36), (1,19,34,16,3,20,35,18,2,21,36,17)(4,15,6,13)(5,14)(7,12)(8,11,9,10)(22,32,27,29)(23,33,26,28)(24,31,25,30), (1,13,34,10,2,15,35,12,3,14,36,11)(7,8,9)(16,29,21,31)(17,28,19,33)(18,30,20,32)(22,25)(23,26)(24,27) >;
gap:G := Group( (1,24,10,36,26,14,3,22,11,34,25,13,2,23,12,35,27,15)(4,29,16,6,28,18)(5,30,17)(7,32,20,8,33,21)(9,31,19), (1,2,3)(4,9,5,8,6,7)(16,21,18,19,17,20)(22,27)(23,25)(24,26)(28,31,29,33,30,32)(34,35,36), (1,19,34,16,3,20,35,18,2,21,36,17)(4,15,6,13)(5,14)(7,12)(8,11,9,10)(22,32,27,29)(23,33,26,28)(24,31,25,30), (1,13,34,10,2,15,35,12,3,14,36,11)(7,8,9)(16,29,21,31)(17,28,19,33)(18,30,20,32)(22,25)(23,26)(24,27) );
sage:G = PermutationGroup(['(1,24,10,36,26,14,3,22,11,34,25,13,2,23,12,35,27,15)(4,29,16,6,28,18)(5,30,17)(7,32,20,8,33,21)(9,31,19)', '(1,2,3)(4,9,5,8,6,7)(16,21,18,19,17,20)(22,27)(23,25)(24,26)(28,31,29,33,30,32)(34,35,36)', '(1,19,34,16,3,20,35,18,2,21,36,17)(4,15,6,13)(5,14)(7,12)(8,11,9,10)(22,32,27,29)(23,33,26,28)(24,31,25,30)', '(1,13,34,10,2,15,35,12,3,14,36,11)(7,8,9)(16,29,21,31)(17,28,19,33)(18,30,20,32)(22,25)(23,26)(24,27)'])
|
| Transitive group: |
36T97370 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$C_3^{12}$ . $(C_2^8:D_6)$ |
$(C_3^{12}.C_2^6.C_2)$ . $S_4$ |
$(C_3^{11}.D_6.C_2^6)$ . $D_6$ (7) |
$C_3^8$ . $(C_6^4.(D_4\times S_4))$ |
all 115 |
Elements of the group are displayed as permutations of degree 36.
The $17217 \times 17217$ rational character table is not available for this group.