Properties

Label 1632586752.bi
Order \( 2^{10} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{13} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,21,2,20)(3,19)(4,11)(5,12)(6,10)(7,15,8,14,9,13)(16,34,18,36,17,35)(22,29,23,28,24,30)(25,31,27,32)(26,33), (1,22,15,35,25,10,3,23,13,36,27,12,2,24,14,34,26,11)(4,33,17,9,29,21)(5,32,16,8,30,19)(6,31,18,7,28,20), (1,17,3,16)(2,18)(4,13,5,15)(6,14)(7,12)(8,10,9,11)(19,36)(20,34)(21,35)(22,32)(23,33)(24,31)(25,30)(26,29,27,28) >;
 
Copy content gap:G := Group( (1,21,2,20)(3,19)(4,11)(5,12)(6,10)(7,15,8,14,9,13)(16,34,18,36,17,35)(22,29,23,28,24,30)(25,31,27,32)(26,33), (1,22,15,35,25,10,3,23,13,36,27,12,2,24,14,34,26,11)(4,33,17,9,29,21)(5,32,16,8,30,19)(6,31,18,7,28,20), (1,17,3,16)(2,18)(4,13,5,15)(6,14)(7,12)(8,10,9,11)(19,36)(20,34)(21,35)(22,32)(23,33)(24,31)(25,30)(26,29,27,28) );
 
Copy content sage:G = PermutationGroup(['(1,21,2,20)(3,19)(4,11)(5,12)(6,10)(7,15,8,14,9,13)(16,34,18,36,17,35)(22,29,23,28,24,30)(25,31,27,32)(26,33)', '(1,22,15,35,25,10,3,23,13,36,27,12,2,24,14,34,26,11)(4,33,17,9,29,21)(5,32,16,8,30,19)(6,31,18,7,28,20)', '(1,17,3,16)(2,18)(4,13,5,15)(6,14)(7,12)(8,10,9,11)(19,36)(20,34)(21,35)(22,32)(23,33)(24,31)(25,30)(26,29,27,28)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(37434907396970084845016505709274708932335540579682290493053719934820435115341372672030550501713177021185557572333914296613154037820619552589138064198921935524003422330057661953604506260557141549304191925744179037444528716847065923728321945305393337902467671430964771531739953963817550865487963100490362222800279375203372494912299930811671591983164699012053214943937674153060980148057922429725691103069676756938763604042597292869798048821607770224811039071620962514934519165711751310439509896854860098052651790098251744261087733657758459037484047764613480897515250651635049388692098712342493211720739762183197110051005927595192572750375339970047694129929419205048790369391782158291196673179907147383022943929769978701161342219014474791966903682477676765204755404057470842307356640095562763130550367555196353169372496144445211167149369263228445154626157808853002671155112175437561440055103834930931941927025079133837269476556550807059877766723243027407321169485027669788714363547036989824793768215305754940047369714039843991088255171225884982608506463427403063544753679134347252986227834942404742694361363162225950295754591428504617808925900375072453831865230349670766498655962620580896650781739697505798984971830373065067746993911445364913613855924142184413317884753830370295679091596574734349496081765914631545894439255867386701783315197607949088538790775971870044575822444608843063607125931201020779470171244979553797003066821269216778785898415044263374579472607766122821117947584773301642879946763764400256044454084866276556434093043020184208141357591697967459204675808722964598362764233410917722280765969160244655077931369281203842621119794627527524341054099388782199605772078434226020599259210308636006199097224359619327,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23;
 

Group information

Description:$C_3^{12}.C_2^6.C_6.D_4$
Order: \(1632586752\)\(\medspace = 2^{10} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(13060694016\)\(\medspace = 2^{13} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 10, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 1505439 1371248 106445664 332416656 67184640 760866048 362797056 1632586752
Conjugacy classes   1 43 516 32 3188 16 196 18 4010
Divisions 1 43 516 32 3186 10 180 10 3978
Autjugacy classes 1 27 199 13 1095 6 52 6 1399

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p \mid c^{2}=d^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([23, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 14337519936, 66490997621, 116, 70670171498, 6997411488, 146659900755, 63519371426, 36526491409, 29484414154, 89392507047, 45962715785, 12509846123, 326, 202127471717, 41335233868, 33579010131, 7349476562, 80851432416, 94123280357, 13691767204, 14926416979, 337801926, 4468717731, 466, 181080446983, 5837598750, 56304273845, 23960865740, 607097059, 2863162, 224160997598, 49689111343, 2957736114, 11976433853, 8507567620, 5519977215, 3258611948, 1335995350, 606, 180680993289, 82248110432, 74272394935, 15845185838, 14579703781, 11164, 3188365947, 332035127434, 138108084807, 5896884335, 14991713454, 35867429, 3604919224, 988389, 477540224, 298561216, 746, 31935098891, 148034635810, 45842345913, 8584807, 6819, 233236689594, 39117827381, 43771986355, 21086934417, 5221638032, 8167680271, 2070369438, 1929802385, 690930592, 360448905, 117616676, 886, 329549617165, 46605466020, 74455137851, 181391698, 12222233961, 7286824064, 278359, 759948533, 101206131, 8326566734, 19535991427, 49919367615, 17884883, 14800740226, 1068616929, 5059162952, 1565095, 566426718, 395291561, 62344, 1712180, 113128, 1026, 497775476751, 21290065958, 81497456701, 15261780, 16654325867, 1907865, 318151, 53237, 9123, 5270054416, 200326929447, 35443405598, 112716, 1013672, 169158, 28444, 5030, 659205271313, 254098892200, 84603688767, 3614160470, 25853551597, 9353035140, 5510307035, 60987369, 127995799, 357989, 348099, 447572127762, 142249583081, 101073443392, 489328215, 18653369582, 9827340037, 61166172, 1036424362, 136491080, 47536, 357928193299, 316146121002, 56458736705, 37066844248, 10421671791, 391081094, 4633355677, 1037914763, 137448249, 29559895, 3574541, 571991289428, 342489674059, 15389121954, 42135158105, 15020032720, 10340991495, 5266894910, 895134444, 197632258, 30411908, 4066236, 555560700309, 18204390380, 127115959939, 46292539482, 14916863921, 12438759304, 1705017759, 672170605, 224749259, 9017217, 1317967, 302360419990, 267487758189, 198963967508, 21214711387, 30983216946, 5986519625, 1886727328, 1128242942, 247762692, 28109242, 2349104]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.17, G.18, G.19, G.20, G.21, G.22, G.23]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "k", "l", "m", "n", "o", "p"]);
 
Copy content gap:G := PcGroupCode(37434907396970084845016505709274708932335540579682290493053719934820435115341372672030550501713177021185557572333914296613154037820619552589138064198921935524003422330057661953604506260557141549304191925744179037444528716847065923728321945305393337902467671430964771531739953963817550865487963100490362222800279375203372494912299930811671591983164699012053214943937674153060980148057922429725691103069676756938763604042597292869798048821607770224811039071620962514934519165711751310439509896854860098052651790098251744261087733657758459037484047764613480897515250651635049388692098712342493211720739762183197110051005927595192572750375339970047694129929419205048790369391782158291196673179907147383022943929769978701161342219014474791966903682477676765204755404057470842307356640095562763130550367555196353169372496144445211167149369263228445154626157808853002671155112175437561440055103834930931941927025079133837269476556550807059877766723243027407321169485027669788714363547036989824793768215305754940047369714039843991088255171225884982608506463427403063544753679134347252986227834942404742694361363162225950295754591428504617808925900375072453831865230349670766498655962620580896650781739697505798984971830373065067746993911445364913613855924142184413317884753830370295679091596574734349496081765914631545894439255867386701783315197607949088538790775971870044575822444608843063607125931201020779470171244979553797003066821269216778785898415044263374579472607766122821117947584773301642879946763764400256044454084866276556434093043020184208141357591697967459204675808722964598362764233410917722280765969160244655077931369281203842621119794627527524341054099388782199605772078434226020599259210308636006199097224359619327,1632586752); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21; o := G.22; p := G.23;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(37434907396970084845016505709274708932335540579682290493053719934820435115341372672030550501713177021185557572333914296613154037820619552589138064198921935524003422330057661953604506260557141549304191925744179037444528716847065923728321945305393337902467671430964771531739953963817550865487963100490362222800279375203372494912299930811671591983164699012053214943937674153060980148057922429725691103069676756938763604042597292869798048821607770224811039071620962514934519165711751310439509896854860098052651790098251744261087733657758459037484047764613480897515250651635049388692098712342493211720739762183197110051005927595192572750375339970047694129929419205048790369391782158291196673179907147383022943929769978701161342219014474791966903682477676765204755404057470842307356640095562763130550367555196353169372496144445211167149369263228445154626157808853002671155112175437561440055103834930931941927025079133837269476556550807059877766723243027407321169485027669788714363547036989824793768215305754940047369714039843991088255171225884982608506463427403063544753679134347252986227834942404742694361363162225950295754591428504617808925900375072453831865230349670766498655962620580896650781739697505798984971830373065067746993911445364913613855924142184413317884753830370295679091596574734349496081765914631545894439255867386701783315197607949088538790775971870044575822444608843063607125931201020779470171244979553797003066821269216778785898415044263374579472607766122821117947584773301642879946763764400256044454084866276556434093043020184208141357591697967459204675808722964598362764233410917722280765969160244655077931369281203842621119794627527524341054099388782199605772078434226020599259210308636006199097224359619327,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(37434907396970084845016505709274708932335540579682290493053719934820435115341372672030550501713177021185557572333914296613154037820619552589138064198921935524003422330057661953604506260557141549304191925744179037444528716847065923728321945305393337902467671430964771531739953963817550865487963100490362222800279375203372494912299930811671591983164699012053214943937674153060980148057922429725691103069676756938763604042597292869798048821607770224811039071620962514934519165711751310439509896854860098052651790098251744261087733657758459037484047764613480897515250651635049388692098712342493211720739762183197110051005927595192572750375339970047694129929419205048790369391782158291196673179907147383022943929769978701161342219014474791966903682477676765204755404057470842307356640095562763130550367555196353169372496144445211167149369263228445154626157808853002671155112175437561440055103834930931941927025079133837269476556550807059877766723243027407321169485027669788714363547036989824793768215305754940047369714039843991088255171225884982608506463427403063544753679134347252986227834942404742694361363162225950295754591428504617808925900375072453831865230349670766498655962620580896650781739697505798984971830373065067746993911445364913613855924142184413317884753830370295679091596574734349496081765914631545894439255867386701783315197607949088538790775971870044575822444608843063607125931201020779470171244979553797003066821269216778785898415044263374579472607766122821117947584773301642879946763764400256044454084866276556434093043020184208141357591697967459204675808722964598362764233410917722280765969160244655077931369281203842621119794627527524341054099388782199605772078434226020599259210308636006199097224359619327,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23;
 
Permutation group:Degree $36$ $\langle(1,21,2,20)(3,19)(4,11)(5,12)(6,10)(7,15,8,14,9,13)(16,34,18,36,17,35)(22,29,23,28,24,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,21,2,20)(3,19)(4,11)(5,12)(6,10)(7,15,8,14,9,13)(16,34,18,36,17,35)(22,29,23,28,24,30)(25,31,27,32)(26,33), (1,22,15,35,25,10,3,23,13,36,27,12,2,24,14,34,26,11)(4,33,17,9,29,21)(5,32,16,8,30,19)(6,31,18,7,28,20), (1,17,3,16)(2,18)(4,13,5,15)(6,14)(7,12)(8,10,9,11)(19,36)(20,34)(21,35)(22,32)(23,33)(24,31)(25,30)(26,29,27,28) >;
 
Copy content gap:G := Group( (1,21,2,20)(3,19)(4,11)(5,12)(6,10)(7,15,8,14,9,13)(16,34,18,36,17,35)(22,29,23,28,24,30)(25,31,27,32)(26,33), (1,22,15,35,25,10,3,23,13,36,27,12,2,24,14,34,26,11)(4,33,17,9,29,21)(5,32,16,8,30,19)(6,31,18,7,28,20), (1,17,3,16)(2,18)(4,13,5,15)(6,14)(7,12)(8,10,9,11)(19,36)(20,34)(21,35)(22,32)(23,33)(24,31)(25,30)(26,29,27,28) );
 
Copy content sage:G = PermutationGroup(['(1,21,2,20)(3,19)(4,11)(5,12)(6,10)(7,15,8,14,9,13)(16,34,18,36,17,35)(22,29,23,28,24,30)(25,31,27,32)(26,33)', '(1,22,15,35,25,10,3,23,13,36,27,12,2,24,14,34,26,11)(4,33,17,9,29,21)(5,32,16,8,30,19)(6,31,18,7,28,20)', '(1,17,3,16)(2,18)(4,13,5,15)(6,14)(7,12)(8,10,9,11)(19,36)(20,34)(21,35)(22,32)(23,33)(24,31)(25,30)(26,29,27,28)'])
 
Transitive group: 36T95358 36T95442 36T95817 36T96614 all 6
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^6.C_2)$ . $S_4$ (3) $(C_3^{12}.C_2^6.C_6)$ . $D_4$ (2) $(C_3^{11}.D_6)$ . $(C_2^5:S_4)$ $(C_3^{12}.C_2^6.C_2^3)$ . $S_3$ all 33

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{7}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 69 normal subgroups (31 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^{12}.C_2^6.C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7:D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 14 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $4010 \times 4010$ character table is not available for this group.

Rational character table

The $3978 \times 3978$ rational character table is not available for this group.