| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p \mid c^{2}=d^{4}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([23, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 14337519936, 66490997621, 116, 70670171498, 6997411488, 146659900755, 63519371426, 36526491409, 29484414154, 89392507047, 45962715785, 12509846123, 326, 202127471717, 41335233868, 33579010131, 7349476562, 80851432416, 94123280357, 13691767204, 14926416979, 337801926, 4468717731, 466, 181080446983, 5837598750, 56304273845, 23960865740, 607097059, 2863162, 224160997598, 49689111343, 2957736114, 11976433853, 8507567620, 5519977215, 3258611948, 1335995350, 606, 180680993289, 82248110432, 74272394935, 15845185838, 14579703781, 11164, 3188365947, 332035127434, 138108084807, 5896884335, 14991713454, 35867429, 3604919224, 988389, 477540224, 298561216, 746, 31935098891, 148034635810, 45842345913, 8584807, 6819, 233236689594, 39117827381, 43771986355, 21086934417, 5221638032, 8167680271, 2070369438, 1929802385, 690930592, 360448905, 117616676, 886, 329549617165, 46605466020, 74455137851, 181391698, 12222233961, 7286824064, 278359, 759948533, 101206131, 8326566734, 19535991427, 49919367615, 17884883, 14800740226, 1068616929, 5059162952, 1565095, 566426718, 395291561, 62344, 1712180, 113128, 1026, 497775476751, 21290065958, 81497456701, 15261780, 16654325867, 1907865, 318151, 53237, 9123, 5270054416, 200326929447, 35443405598, 112716, 1013672, 169158, 28444, 5030, 659205271313, 254098892200, 84603688767, 3614160470, 25853551597, 9353035140, 5510307035, 60987369, 127995799, 357989, 348099, 447572127762, 142249583081, 101073443392, 489328215, 18653369582, 9827340037, 61166172, 1036424362, 136491080, 47536, 357928193299, 316146121002, 56458736705, 37066844248, 10421671791, 391081094, 4633355677, 1037914763, 137448249, 29559895, 3574541, 571991289428, 342489674059, 15389121954, 42135158105, 15020032720, 10340991495, 5266894910, 895134444, 197632258, 30411908, 4066236, 555560700309, 18204390380, 127115959939, 46292539482, 14916863921, 12438759304, 1705017759, 672170605, 224749259, 9017217, 1317967, 302360419990, 267487758189, 198963967508, 21214711387, 30983216946, 5986519625, 1886727328, 1128242942, 247762692, 28109242, 2349104]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.17, G.18, G.19, G.20, G.21, G.22, G.23]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "k", "l", "m", "n", "o", "p"]);
gap:G := PcGroupCode(37434907396970084845016505709274708932335540579682290493053719934820435115341372672030550501713177021185557572333914296613154037820619552589138064198921935524003422330057661953604506260557141549304191925744179037444528716847065923728321945305393337902467671430964771531739953963817550865487963100490362222800279375203372494912299930811671591983164699012053214943937674153060980148057922429725691103069676756938763604042597292869798048821607770224811039071620962514934519165711751310439509896854860098052651790098251744261087733657758459037484047764613480897515250651635049388692098712342493211720739762183197110051005927595192572750375339970047694129929419205048790369391782158291196673179907147383022943929769978701161342219014474791966903682477676765204755404057470842307356640095562763130550367555196353169372496144445211167149369263228445154626157808853002671155112175437561440055103834930931941927025079133837269476556550807059877766723243027407321169485027669788714363547036989824793768215305754940047369714039843991088255171225884982608506463427403063544753679134347252986227834942404742694361363162225950295754591428504617808925900375072453831865230349670766498655962620580896650781739697505798984971830373065067746993911445364913613855924142184413317884753830370295679091596574734349496081765914631545894439255867386701783315197607949088538790775971870044575822444608843063607125931201020779470171244979553797003066821269216778785898415044263374579472607766122821117947584773301642879946763764400256044454084866276556434093043020184208141357591697967459204675808722964598362764233410917722280765969160244655077931369281203842621119794627527524341054099388782199605772078434226020599259210308636006199097224359619327,1632586752); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21; o := G.22; p := G.23;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(37434907396970084845016505709274708932335540579682290493053719934820435115341372672030550501713177021185557572333914296613154037820619552589138064198921935524003422330057661953604506260557141549304191925744179037444528716847065923728321945305393337902467671430964771531739953963817550865487963100490362222800279375203372494912299930811671591983164699012053214943937674153060980148057922429725691103069676756938763604042597292869798048821607770224811039071620962514934519165711751310439509896854860098052651790098251744261087733657758459037484047764613480897515250651635049388692098712342493211720739762183197110051005927595192572750375339970047694129929419205048790369391782158291196673179907147383022943929769978701161342219014474791966903682477676765204755404057470842307356640095562763130550367555196353169372496144445211167149369263228445154626157808853002671155112175437561440055103834930931941927025079133837269476556550807059877766723243027407321169485027669788714363547036989824793768215305754940047369714039843991088255171225884982608506463427403063544753679134347252986227834942404742694361363162225950295754591428504617808925900375072453831865230349670766498655962620580896650781739697505798984971830373065067746993911445364913613855924142184413317884753830370295679091596574734349496081765914631545894439255867386701783315197607949088538790775971870044575822444608843063607125931201020779470171244979553797003066821269216778785898415044263374579472607766122821117947584773301642879946763764400256044454084866276556434093043020184208141357591697967459204675808722964598362764233410917722280765969160244655077931369281203842621119794627527524341054099388782199605772078434226020599259210308636006199097224359619327,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(37434907396970084845016505709274708932335540579682290493053719934820435115341372672030550501713177021185557572333914296613154037820619552589138064198921935524003422330057661953604506260557141549304191925744179037444528716847065923728321945305393337902467671430964771531739953963817550865487963100490362222800279375203372494912299930811671591983164699012053214943937674153060980148057922429725691103069676756938763604042597292869798048821607770224811039071620962514934519165711751310439509896854860098052651790098251744261087733657758459037484047764613480897515250651635049388692098712342493211720739762183197110051005927595192572750375339970047694129929419205048790369391782158291196673179907147383022943929769978701161342219014474791966903682477676765204755404057470842307356640095562763130550367555196353169372496144445211167149369263228445154626157808853002671155112175437561440055103834930931941927025079133837269476556550807059877766723243027407321169485027669788714363547036989824793768215305754940047369714039843991088255171225884982608506463427403063544753679134347252986227834942404742694361363162225950295754591428504617808925900375072453831865230349670766498655962620580896650781739697505798984971830373065067746993911445364913613855924142184413317884753830370295679091596574734349496081765914631545894439255867386701783315197607949088538790775971870044575822444608843063607125931201020779470171244979553797003066821269216778785898415044263374579472607766122821117947584773301642879946763764400256044454084866276556434093043020184208141357591697967459204675808722964598362764233410917722280765969160244655077931369281203842621119794627527524341054099388782199605772078434226020599259210308636006199097224359619327,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23;
|
| Permutation group: | Degree $36$
$\langle(1,21,2,20)(3,19)(4,11)(5,12)(6,10)(7,15,8,14,9,13)(16,34,18,36,17,35)(22,29,23,28,24,30) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,21,2,20)(3,19)(4,11)(5,12)(6,10)(7,15,8,14,9,13)(16,34,18,36,17,35)(22,29,23,28,24,30)(25,31,27,32)(26,33), (1,22,15,35,25,10,3,23,13,36,27,12,2,24,14,34,26,11)(4,33,17,9,29,21)(5,32,16,8,30,19)(6,31,18,7,28,20), (1,17,3,16)(2,18)(4,13,5,15)(6,14)(7,12)(8,10,9,11)(19,36)(20,34)(21,35)(22,32)(23,33)(24,31)(25,30)(26,29,27,28) >;
gap:G := Group( (1,21,2,20)(3,19)(4,11)(5,12)(6,10)(7,15,8,14,9,13)(16,34,18,36,17,35)(22,29,23,28,24,30)(25,31,27,32)(26,33), (1,22,15,35,25,10,3,23,13,36,27,12,2,24,14,34,26,11)(4,33,17,9,29,21)(5,32,16,8,30,19)(6,31,18,7,28,20), (1,17,3,16)(2,18)(4,13,5,15)(6,14)(7,12)(8,10,9,11)(19,36)(20,34)(21,35)(22,32)(23,33)(24,31)(25,30)(26,29,27,28) );
sage:G = PermutationGroup(['(1,21,2,20)(3,19)(4,11)(5,12)(6,10)(7,15,8,14,9,13)(16,34,18,36,17,35)(22,29,23,28,24,30)(25,31,27,32)(26,33)', '(1,22,15,35,25,10,3,23,13,36,27,12,2,24,14,34,26,11)(4,33,17,9,29,21)(5,32,16,8,30,19)(6,31,18,7,28,20)', '(1,17,3,16)(2,18)(4,13,5,15)(6,14)(7,12)(8,10,9,11)(19,36)(20,34)(21,35)(22,32)(23,33)(24,31)(25,30)(26,29,27,28)'])
|
| Transitive group: |
36T95358 |
36T95442 |
36T95817 |
36T96614 |
all 6 |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_3^{12}.C_2^6.C_2)$ . $S_4$ (3) |
$(C_3^{12}.C_2^6.C_6)$ . $D_4$ (2) |
$(C_3^{11}.D_6)$ . $(C_2^5:S_4)$ |
$(C_3^{12}.C_2^6.C_2^3)$ . $S_3$ |
all 33 |
Elements of the group are displayed as permutations of degree 36.
The $4010 \times 4010$ character table is not available for this group.
The $3978 \times 3978$ rational character table is not available for this group.