Properties

Label 1632586752.bas
Order \( 2^{10} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{13} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. not computed
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (2,3)(4,33,5,32,6,31)(7,28)(8,30)(9,29)(10,27,15,22)(11,26,13,24)(12,25,14,23)(16,21,17,19,18,20)(34,35), (1,5,3,4)(2,6)(7,34,8,35)(9,36)(10,33,14,30,11,31,13,29,12,32,15,28)(16,23,21,25)(17,22,20,27)(18,24,19,26) >;
 
Copy content gap:G := Group( (2,3)(4,33,5,32,6,31)(7,28)(8,30)(9,29)(10,27,15,22)(11,26,13,24)(12,25,14,23)(16,21,17,19,18,20)(34,35), (1,5,3,4)(2,6)(7,34,8,35)(9,36)(10,33,14,30,11,31,13,29,12,32,15,28)(16,23,21,25)(17,22,20,27)(18,24,19,26) );
 
Copy content sage:G = PermutationGroup(['(2,3)(4,33,5,32,6,31)(7,28)(8,30)(9,29)(10,27,15,22)(11,26,13,24)(12,25,14,23)(16,21,17,19,18,20)(34,35)', '(1,5,3,4)(2,6)(7,34,8,35)(9,36)(10,33,14,30,11,31,13,29,12,32,15,28)(16,23,21,25)(17,22,20,27)(18,24,19,26)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(104055623111461889192612552038900249300922366573022008305341650368792148670458514156397940047588791546546908652915530676514578044145106162954092605281389058480729593704683184334141717417369164365416456338725090157507511667332933728289825796162570302318498398200308098569205606833225975723763840567959038066519330746648285835150911212899305654670603026945542917422038749296819155376782253727069352227781421891000961402276844207491050557679362360044676781731271097053457487398833716695099517417532219363765520690669651504318879366731138637249818920364749418265538328759510180165365445076685869690107175989528481466463673872918829689484224766470579133651579644417161218853558882352351724310616896707051904202251769063390980496935109402669085970829179001462056035766218277419333174283279989576387929901861471718694049289553974406149563354171098769319398869593463434503004403408012326279250747396974742953516092175541925683328408361629980477351206344179464378821837930821267209767972717212554506416459924466992707149619255797324422681166497513893024674301869327294228761112524874687704285137644071804837636976891343491838063066674430765807422384631004833198122604842441180622807000402565218607781389711263163196825043128742809625957475551954785910625030580026505937363623396899381201534402243213805419571851534675412526957682551986595552332165844564109603302430056119420945385315337934440375562335872708557835496262666128483408883901045158577905318744749489613413629486704776068487835945911286309702702796967961200651455294162988430737751873904519186329161661143069991751280518018693134829002703213641929670784667831806914106313341970296771553709850818906834101931380746943,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23;
 

Group information

Description:$C_3^{12}.C_2^6.S_4.C_2$
Order: \(1632586752\)\(\medspace = 2^{10} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(13060694016\)\(\medspace = 2^{13} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 10, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 696303 3890672 50493456 224575632 268738560 842327424 241864704 1632586752
Conjugacy classes   1 33 645 22 4088 44 646 8 5487
Divisions 1 33 465 22 3298 26 304 5 4154
Autjugacy classes 1 27 318 20 1967 15 235 3 2586

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid c^{2}=d^{6}=e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([23, 2, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 15675234528, 31118754821, 116, 91627010474, 17901323616, 38198440851, 10499033402, 18146616133, 35550553984, 20769256707, 37556407145, 4982822423, 326, 40591819013, 16080011740, 3194284947, 9640901978, 49280401134, 89586996521, 40849513498, 20732896791, 10531313744, 3645719380, 466, 61411165831, 93951009438, 45880078421, 17409784204, 3914629539, 207788706440, 147376251607, 55478903022, 24571584005, 9258804568, 151401188, 24145270, 606, 223720300809, 140882146592, 10087838695, 12966579461, 1462982307, 55087518694, 76855535493, 49981629347, 12181804351, 14873200158, 70851257, 941302840, 1282702581, 381244376, 196132648, 746, 383344790411, 183381200674, 5310633081, 1081911248, 15946107655, 64425173, 15026739, 132675173136, 127474555529, 48769191295, 7536952881, 8454174872, 3055275415, 2131595070, 1481072753, 371541184, 158559321, 55572980, 969922, 886, 15263603725, 83050652196, 38940217403, 25963483474, 18659688873, 278359, 360604133, 7971, 276867439034, 251993633887, 35750453595, 15650988563, 4520383306, 3526435569, 2459607272, 1709116375, 428415678, 267415241, 3192184, 1124277, 6096440, 5366788, 1026, 356024844303, 236937830438, 89006211133, 11446379, 1907865, 53237, 9123, 238644635392, 278667334419, 110770551866, 37032266965, 7971970860, 118576355, 3906934714, 47126625, 15709016, 40961406, 1309337, 12739072, 96524, 1166, 163183101137, 137377451128, 58643374959, 18852010070, 4365322093, 2787882779, 20210071, 18570677, 10275, 5871937554, 311702080505, 5137945408, 40777500, 1132952, 189078, 31804, 5630, 645970360339, 222089140842, 165355706945, 2060329048, 85847197, 28615883, 2384889, 596455, 99701, 16947, 543366143732, 279257759971, 162522796026, 24337635929, 3650645488, 4281621278, 17527354, 14084576, 313326, 29368, 546394336245, 217765807292, 133199041339, 53542798938, 1274828657, 2148322335, 6558011, 19673577, 984007, 85397, 850810708918, 65750247981, 212702677292, 47979910747, 23989955442, 111064860, 18511066, 3085472]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.17, G.19, G.20, G.21, G.22, G.23]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "l", "m", "n", "o"]);
 
Copy content gap:G := PcGroupCode(104055623111461889192612552038900249300922366573022008305341650368792148670458514156397940047588791546546908652915530676514578044145106162954092605281389058480729593704683184334141717417369164365416456338725090157507511667332933728289825796162570302318498398200308098569205606833225975723763840567959038066519330746648285835150911212899305654670603026945542917422038749296819155376782253727069352227781421891000961402276844207491050557679362360044676781731271097053457487398833716695099517417532219363765520690669651504318879366731138637249818920364749418265538328759510180165365445076685869690107175989528481466463673872918829689484224766470579133651579644417161218853558882352351724310616896707051904202251769063390980496935109402669085970829179001462056035766218277419333174283279989576387929901861471718694049289553974406149563354171098769319398869593463434503004403408012326279250747396974742953516092175541925683328408361629980477351206344179464378821837930821267209767972717212554506416459924466992707149619255797324422681166497513893024674301869327294228761112524874687704285137644071804837636976891343491838063066674430765807422384631004833198122604842441180622807000402565218607781389711263163196825043128742809625957475551954785910625030580026505937363623396899381201534402243213805419571851534675412526957682551986595552332165844564109603302430056119420945385315337934440375562335872708557835496262666128483408883901045158577905318744749489613413629486704776068487835945911286309702702796967961200651455294162988430737751873904519186329161661143069991751280518018693134829002703213641929670784667831806914106313341970296771553709850818906834101931380746943,1632586752); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.17; k := G.19; l := G.20; m := G.21; n := G.22; o := G.23;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(104055623111461889192612552038900249300922366573022008305341650368792148670458514156397940047588791546546908652915530676514578044145106162954092605281389058480729593704683184334141717417369164365416456338725090157507511667332933728289825796162570302318498398200308098569205606833225975723763840567959038066519330746648285835150911212899305654670603026945542917422038749296819155376782253727069352227781421891000961402276844207491050557679362360044676781731271097053457487398833716695099517417532219363765520690669651504318879366731138637249818920364749418265538328759510180165365445076685869690107175989528481466463673872918829689484224766470579133651579644417161218853558882352351724310616896707051904202251769063390980496935109402669085970829179001462056035766218277419333174283279989576387929901861471718694049289553974406149563354171098769319398869593463434503004403408012326279250747396974742953516092175541925683328408361629980477351206344179464378821837930821267209767972717212554506416459924466992707149619255797324422681166497513893024674301869327294228761112524874687704285137644071804837636976891343491838063066674430765807422384631004833198122604842441180622807000402565218607781389711263163196825043128742809625957475551954785910625030580026505937363623396899381201534402243213805419571851534675412526957682551986595552332165844564109603302430056119420945385315337934440375562335872708557835496262666128483408883901045158577905318744749489613413629486704776068487835945911286309702702796967961200651455294162988430737751873904519186329161661143069991751280518018693134829002703213641929670784667831806914106313341970296771553709850818906834101931380746943,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(104055623111461889192612552038900249300922366573022008305341650368792148670458514156397940047588791546546908652915530676514578044145106162954092605281389058480729593704683184334141717417369164365416456338725090157507511667332933728289825796162570302318498398200308098569205606833225975723763840567959038066519330746648285835150911212899305654670603026945542917422038749296819155376782253727069352227781421891000961402276844207491050557679362360044676781731271097053457487398833716695099517417532219363765520690669651504318879366731138637249818920364749418265538328759510180165365445076685869690107175989528481466463673872918829689484224766470579133651579644417161218853558882352351724310616896707051904202251769063390980496935109402669085970829179001462056035766218277419333174283279989576387929901861471718694049289553974406149563354171098769319398869593463434503004403408012326279250747396974742953516092175541925683328408361629980477351206344179464378821837930821267209767972717212554506416459924466992707149619255797324422681166497513893024674301869327294228761112524874687704285137644071804837636976891343491838063066674430765807422384631004833198122604842441180622807000402565218607781389711263163196825043128742809625957475551954785910625030580026505937363623396899381201534402243213805419571851534675412526957682551986595552332165844564109603302430056119420945385315337934440375562335872708557835496262666128483408883901045158577905318744749489613413629486704776068487835945911286309702702796967961200651455294162988430737751873904519186329161661143069991751280518018693134829002703213641929670784667831806914106313341970296771553709850818906834101931380746943,1632586752)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.20; m = G.21; n = G.22; o = G.23;
 
Permutation group:Degree $36$ $\langle(2,3)(4,33,5,32,6,31)(7,28)(8,30)(9,29)(10,27,15,22)(11,26,13,24)(12,25,14,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (2,3)(4,33,5,32,6,31)(7,28)(8,30)(9,29)(10,27,15,22)(11,26,13,24)(12,25,14,23)(16,21,17,19,18,20)(34,35), (1,5,3,4)(2,6)(7,34,8,35)(9,36)(10,33,14,30,11,31,13,29,12,32,15,28)(16,23,21,25)(17,22,20,27)(18,24,19,26) >;
 
Copy content gap:G := Group( (2,3)(4,33,5,32,6,31)(7,28)(8,30)(9,29)(10,27,15,22)(11,26,13,24)(12,25,14,23)(16,21,17,19,18,20)(34,35), (1,5,3,4)(2,6)(7,34,8,35)(9,36)(10,33,14,30,11,31,13,29,12,32,15,28)(16,23,21,25)(17,22,20,27)(18,24,19,26) );
 
Copy content sage:G = PermutationGroup(['(2,3)(4,33,5,32,6,31)(7,28)(8,30)(9,29)(10,27,15,22)(11,26,13,24)(12,25,14,23)(16,21,17,19,18,20)(34,35)', '(1,5,3,4)(2,6)(7,34,8,35)(9,36)(10,33,14,30,11,31,13,29,12,32,15,28)(16,23,21,25)(17,22,20,27)(18,24,19,26)'])
 
Transitive group: 36T96753 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(C_2^8:D_6)$ $(C_3^{12}.C_2^6.S_4)$ . $C_2$ $(C_3^{12}.C_2^6.S_4)$ . $C_2$ $(C_3^{11}.D_6.C_2^6)$ . $D_6$ all 19

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{7}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 32 normal subgroups (30 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $5487 \times 5487$ character table is not available for this group.

Rational character table

The $4154 \times 4154$ rational character table is not available for this group.