Properties

Label 1632.1025
Order \( 2^{5} \cdot 3 \cdot 17 \)
Exponent \( 2^{2} \cdot 3 \cdot 17 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 2 \)
$\card{\mathrm{Aut}(G)}$ \( 2^{10} \cdot 3 \cdot 17 \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \)
Perm deg. $29$
Trans deg. $408$
Rank $2$

Related objects

Downloads

Learn more

Group information

Description:$C_{68}.S_4$
Order: \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \)
Exponent: \(204\)\(\medspace = 2^{2} \cdot 3 \cdot 17 \)
Automorphism group:Group of order \(52224\)\(\medspace = 2^{10} \cdot 3 \cdot 17 \) (generators)
Outer automorphisms:$C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \)
Composition factors:$C_2$ x 5, $C_3$, $C_{17}$
Derived length:$3$

This group is nonabelian and monomial (hence solvable).

Group statistics

Order 1 2 3 4 6 12 17 34 51 68 102 204
Elements 1 7 8 824 8 16 16 112 128 128 128 256 1632
Conjugacy classes   1 3 1 6 1 2 8 24 16 32 16 32 142
Divisions 1 3 1 6 1 1 1 3 1 2 1 1 22
Autjugacy classes 1 3 1 4 1 1 1 3 1 2 1 1 20

Dimension 1 2 3 4 6 16 32 48 64 96
Irr. complex chars.   4 101 4 0 33 0 0 0 0 0 142
Irr. rational chars. 4 3 4 1 1 2 3 2 1 1 22

Minimal Presentations

Permutation degree:$29$
Transitive degree:$408$
Rank: $2$
Inequivalent generating pairs: $9$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 6 12 192
Arbitrary 5 7 23

Constructions

Presentation: $\langle a, b, c, d \mid b^{12}=c^{2}=d^{34}=[a,c]=[c,d]=1, a^{2}=b^{6}, b^{a}=b^{11}, d^{a}=cd^{33}, c^{b}=cd^{17}, d^{b}=cd^{18} \rangle$ Copy content Toggle raw display
Permutation group:Degree $29$ $\langle(2,4)(5,6,8,10)(7,11,12,9)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27) \!\cdots\! \rangle$ Copy content Toggle raw display
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $(A_4\times C_{17})$ $\,\rtimes\,$ $Q_8$ $C_{17}$ $\,\rtimes\,$ $(A_4:Q_8)$ $A_4$ $\,\rtimes\,$ $(C_{17}:Q_8)$ $C_2^2$ $\,\rtimes\,$ $(C_{51}:Q_8)$ all 5
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_{68}$ . $S_4$ $C_2^3$ . $D_{102}$ $(C_{34}.S_4)$ . $C_2$ (2) $C_{34}$ . $(C_2\times S_4)$ all 13

Elements of the group are displayed as words in the generators from the presentation given above.

Homology

Abelianization: $C_{2}^{2} $
Schur multiplier: $C_{2}$
Commutator length: $1$

Subgroups

There are 1596 subgroups in 84 conjugacy classes, 21 normal (19 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_{34}:S_4$
Commutator: $G' \simeq$ $A_4\times C_{34}$ $G/G' \simeq$ $C_2^2$
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $C_{34}:S_4$
Fitting: $\operatorname{Fit} \simeq$ $C_2^2\times C_{68}$ $G/\operatorname{Fit} \simeq$ $S_3$
Radical: $R \simeq$ $C_{68}.S_4$ $G/R \simeq$ $C_1$
Socle: $\operatorname{soc} \simeq$ $C_2^2\times C_{34}$ $G/\operatorname{soc} \simeq$ $D_6$
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2:Q_8$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
17-Sylow subgroup: $P_{ 17 } \simeq$ $C_{17}$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $C_{68}.S_4$ $\rhd$ $A_4\times C_{34}$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Chief series $C_{68}.S_4$ $\rhd$ $C_{34}.S_4$ $\rhd$ $A_4\times C_{34}$ $\rhd$ $A_4\times C_{17}$ $\rhd$ $C_2\times C_{34}$ $\rhd$ $C_{17}$ $\rhd$ $C_1$
Lower central series $C_{68}.S_4$ $\rhd$ $A_4\times C_{34}$ $\rhd$ $A_4\times C_{17}$
Upper central series $C_1$ $\lhd$ $C_2$ $\lhd$ $C_4$

Character theory

Complex character table

See the $142 \times 142$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $22 \times 22$ rational character table.