All subgroups of index up to 1008 (order at least 160) are shown, as well as all normal subgroups of any index.
| Order 161280: $S_5\times C_2^3:\GL(3,2)$ |
| Order 80640: $(C_2^3\times A_5).\PSL(2,7)$ |
| Order 32256: $(C_2^3\times S_4).\PSL(2,7)$ |
| Order 26880: $(C_2^3\times F_5).\PSL(2,7)$ |
| Order 23040: $C_2^2:S_4:C_2.S_5$, $C_2^3:S_4.S_5$ |
| Order 20160: $A_5.\PSL(2,7).C_2$ x 2, $F_8:C_3.S_5$ |
| Order 16128: $(C_2^3\times A_4).\PSL(2,7)$, $(C_2^4\times S_3).\PSL(2,7)$ |
| Order 13440: $(C_2^3\times D_5).\PSL(2,7)$ |
| Order 11520: $C_2^2:S_4.S_5$ x 2, $C_2^2:S_4.S_5$ x 2, $C_2^3:A_4.S_5$, $C_2^2\wr C_2:C_3.S_5$, $C_2^2:S_4:C_2.A_5$, $C_2^3:S_4.A_5$, $C_2^3:A_4.S_5$, $C_2^2\wr C_2:C_3.S_5$ |
| Order 10752: $(C_2^3\times D_4).\PSL(2,7)$ |
| Order 10080: $A_5\times \PSL(2,7)$ x 2, $F_8:C_3.A_5$ |
| Order 8064: $(C_2^3\times S_3).\PSL(2,7)$ x 2, $(C_2^3\times C_6).\PSL(2,7)$ |
| Order 7680: $C_2\wr C_2^2.S_5$ |
| Order 6720: $(C_2^2\times C_{10}).\PSL(2,7)$, $F_8.S_5$ |
| Order 5760: $(C_2\times S_4).S_5$ x 3, $C_2^2:S_4.A_5$ x 2, $C_2^4:C_3.S_5$ x 2, $C_2^4.(C_6\times A_5)$, $C_2^3:A_4.A_5$, $C_2^4:C_3.S_5$, $C_2^4:C_3.S_5$ |
| Order 5376: $C_2^5.\PSL(2,7)$ x 2, $(C_2^3\times C_4).\PSL(2,7)$ |
| Order 4608: $C_2^6.S_3^2.C_2$, $C_2^5.A_4.D_6$ |
| Order 4032: $S_4.\PSL(2,7)$ x 2, $(C_2^2\times C_6).\PSL(2,7)$, $C_2^5.C_{21}.C_6$ |
| Order 3840: $C_2^2\wr C_2.S_5$ x 3, $C_2^2.D_4.S_5$ x 3, $C_2^2.D_4.S_5$ x 3, $C_2^2\wr C_2.S_5$ x 3, $Q_8:C_2^2.S_5$, $C_2^4.(S_3\times F_5).C_2$, $Q_8:C_2^2.S_5$, $C_2\wr C_2^2.A_5$, $C_2^3.(F_5\times S_4)$ |
| Order 3360: $\PSL(2,7)\times F_5$ x 2, $F_8.A_5$, $F_8.C_{15}.C_4$ |
| Order 2880: $S_4.S_5$ x 14, $(C_2\times A_4).S_5$ x 3, $(C_2\times A_4).S_5$ x 3, $(C_2\times S_4).A_5$ x 3, $C_2^4:C_3.A_5$, $\SL(2,3).S_5$ |
| Order 2688: $C_2^4.\PSL(2,7)$ x 2 |
| Order 2520: $C_7:C_3.S_5$ |
| Order 2304: $C_2^6.S_3^2$ x 2, $C_2^6.S_3^2$ x 2, $(C_2^4\times A_4).C_6.C_2$, $C_2^3.A_4^2.C_2$, $(C_2^4\times A_4).D_6$, $C_2^2.A_4^2.C_2^2$, $C_2^3:A_4.D_6.C_2$, $(C_2^3\times A_4).A_4.C_2$, $C_2^5.C_3:S_4$, $C_2^4.D_6^2$ |
| Order 2016: $D_6.\PSL(2,7)$ x 2, $A_4.\PSL(2,7)$ x 2, $F_8.(C_6\times S_3)$, $F_8.A_4.C_3$ |
| Order 1920: $(C_2^2\times S_5):C_4$ x 6, $C_2\times D_4\times S_5$ x 5, $C_2.(D_4\times S_5)$ x 5, $(C_2\times D_4).S_5$ x 5, $C_2^2:C_4\times S_5$ x 5, $(C_2\times D_4):S_5$ x 3, $A_5\times C_2^2\wr C_2$ x 3, $C_2^4.S_5$ x 3, $C_2^3:C_4\times A_5$ x 3, $(C_2^3\times A_5):C_4$ x 3, $F_5\times C_2^2:S_4$ x 2, $(C_2^2\times F_5):S_4$ x 2, $C_2^4\times S_5$, $D_4:C_2^2\times A_5$, $D_4:(C_2\times S_5)$, $D_4:C_2\times S_5$, $D_5\times C_2^3:S_4$, $F_5\times Q_8:A_4$, $(C_2^2\times D_{10}).S_4$, $D_5\times C_2^3:S_4$, $C_2^3:A_4\times F_5$, $(C_2^2\times D_{10}).S_4$ |
| Order 1680: $D_5\times \GL(3,2)$ x 2, $D_5\times F_8:C_3$ |
| Order 1536: $D_4\times C_2^3:S_4$, $C_2\wr C_2^2\times S_4$, $D_4\times C_2^3:S_4$ |
| Order 1440: $S_4\times A_5$ x 8, $A_4:S_5$ x 8, $A_4\times S_5$ x 8, $C_2^3:\GL(2,4)$ x 3, $D_6\times S_5$, $A_5\times \SL(2,3)$ |
| Order 1344: $D_4\times \GL(3,2)$ x 2, $S_4\times F_8$, $C_2^3:\GL(3,2)$, $D_4\times F_8:C_3$ |
| Order 1280: $C_2\wr C_2^2\times F_5$ |
| Order 1260: $C_7:\GL(2,4)$ |
| Order 1152: $S_3\times C_2^3:S_4$ x 8, $S_3\times C_2^3:S_4$ x 4, $C_2\times S_4^2$ x 3, $C_2^5:S_3^2$ x 2, $(C_2^2\times A_4):S_4$ x 2, $A_4\times C_2^2:S_4$ x 2, $C_2^5:S_3^2$ x 2, $C_2^2:A_4\times S_4$, $Q_8:A_4\times D_6$, $(C_2^3\times C_6):S_4$, $C_6\times C_2^3:S_4$, $Q_8:A_4^2$, $C_2^3:A_4\times D_6$, $(C_2^3\times C_6):S_4$, $C_6\times C_2^3:S_4$, $C_2^3:A_4^2$, $(C_2^2\times S_4):A_4$ |
| Order 1120: $F_5\times F_8$ |
| Order 1008: $S_3\times \GL(3,2)$ x 4, $F_8:C_3\times S_3$ x 2, $C_6\times \GL(3,2)$ x 2, $C_3\times F_8:C_6$ |
| Order 960: $D_4\times S_5$ x 17, $C_2^3:S_5$ x 10, $C_2^3\times S_5$ x 9, $(C_2\times C_4):S_5$ x 7, $C_2^2:C_4\times A_5$ x 5, $C_2^3.S_5$ x 5, $C_2\times D_4\times A_5$ x 5, $C_2\times C_4:S_5$ x 5, $C_2\times C_4\times S_5$ x 5, $C_2\times F_5\times S_4$ x 3, $D_4:S_5$ x 3, $(C_2\times C_4):S_5$ x 3, $(C_2\times D_{10}):S_4$ x 2, $D_5\times C_2^2:S_4$ x 2, $(C_2\times D_{10}).S_4$ x 2, $D_5\times C_2^3:A_4$, $C_2^4:D_{30}$, $C_5\times C_2^3:S_4$, $(C_2^3\times C_{10}):C_{12}$, $C_2^2:A_4\times F_5$, $C_2^4\times A_5$, $D_5\times Q_8:A_4$, $(C_2^2\times C_{10}):S_4$, $C_5\times C_2^3:S_4$, $D_4:C_2\times A_5$, $Q_8:S_5$, $Q_8\times S_5$ |
| Order 840: $C_5\times \PSL(2,7)$ x 2, $F_8:C_{15}$, $C_7\times S_5$ |
| Order 768: $C_2\wr D_6$ x 4, $C_2^6:D_6$ x 3, $C_2^5:D_{12}$ x 3, $C_2^3:\GL(2,\mathbb{Z}/4)$ x 3, $C_2^3:C_4\times S_4$ x 3, $C_2^5:S_4$ x 2, $C_2^6:D_6$ x 2, $C_2^3:\GL(2,\mathbb{Z}/4)$ x 2, $C_2^5:S_4$ x 2, $(C_2^2\times D_4):S_4$ x 2, $C_2^3:\GL(2,\mathbb{Z}/4)$ x 2, $C_2^5:S_4$, $\GL(2,\mathbb{Z}/4):C_2^3$, $(C_2^3\times C_4):S_4$, $C_2^5:S_4$, $C_4\times C_2^3:S_4$, $C_2^3:\GL(2,\mathbb{Z}/4)$, $(C_2^3\times C_4):S_4$, $C_4\times C_2^3:S_4$, $D_4\times Q_8:A_4$, $A_4\times C_2\wr C_2^2$, $D_4\times C_2^3:A_4$, $C_2\wr C_2^2\times D_6$ |
| Order 720: $A_4\times A_5$ x 5, $S_3\times S_5$ x 4, $D_6\times A_5$, $C_6:S_5$, $C_6\times S_5$ |
| Order 672: $C_2^2\times \GL(3,2)$ x 4, $C_2\times F_8:C_6$ x 2, $C_4\times \GL(3,2)$ x 2, $D_6\times F_8$, $A_4\times F_8$, $F_8:A_4$, $F_8:C_{12}$ |
| Order 640: $C_2^4:(C_2\times F_5)$ x 3, $C_2^3:C_4\times F_5$ x 3, $(C_4\times D_{10}).D_4$ x 3, $C_2^2\wr C_2\times F_5$ x 3, $(C_2\times D_{20}).D_4$, $D_{10}.C_2^5$, $C_2\wr C_2^2\times D_5$ |
| Order 576: $S_4^2$ x 14, $C_2^4:S_3^2$ x 8, $C_2^4:S_3^2$ x 8, $A_4^2:C_2^2$ x 6, $S_3\times C_2^3:A_4$ x 4, $(C_2^2\times C_6):S_4$ x 4, $C_3\times C_2^3:S_4$ x 4, $C_2^2:D_6^2$ x 3, $A_4^2:C_2^2$ x 3, $(C_2^2\times C_6):S_4$ x 2, $C_2^2:S_4\times C_6$ x 2, $S_3\times Q_8:A_4$ x 2, $(C_2^2\times C_6):S_4$ x 2, $C_3\times C_2^3:S_4$ x 2, $C_2^2:A_4\times D_6$, $C_2^2:A_4^2$, $C_6\times Q_8:A_4$, $S_4\times \SL(2,3)$, $C_2^4:C_6^2$, $C_2^4:(C_6\times S_3)$ |
| Order 560: $D_5\times F_8$ |
| Order 512: $C_2^3:D_4^2$ |
| Order 504: $C_3\times \GL(3,2)$ x 2, $C_7:C_3\times S_4$, $F_8:C_3^2$ |
| Order 480: $C_2^2\times S_5$ x 29, $C_2^2:S_5$ x 14, $F_5\times S_4$ x 14, $C_4\times S_5$ x 8, $D_4\times A_5$ x 7, $C_4:S_5$ x 7, $C_2^3\times A_5$ x 6, $C_2\times C_4\times A_5$ x 5, $C_2^2.S_5$ x 5, $D_{10}\times S_4$ x 3, $C_2\times A_4\times F_5$ x 3, $D_{10}.S_4$ x 3, $C_2^4:D_{15}$ x 2, $C_5\times C_2^2:S_4$ x 2, $F_5\times \SL(2,3)$, $Q_8\times A_5$, $A_5:Q_8$, $C_2^4:C_{30}$, $(C_2\times D_{10}):A_4$, $D_5\times C_2^2:A_4$, $C_5\times Q_8:A_4$ |
| Order 448: $D_4\times F_8$ |
| Order 420: $C_{35}:C_{12}$, $C_7\times A_5$ |
| Order 384: $C_2\wr C_2^2\times S_3$ x 16, $C_2^4:S_4$ x 12, $\GL(2,\mathbb{Z}/4):C_2^2$ x 8, $C_2^2.\GL(2,\mathbb{Z}/4)$ x 6, $C_2^4:S_4$ x 6, $C_2^2:\GL(2,\mathbb{Z}/4)$ x 5, $C_2^4:D_{12}$ x 5, $C_2^5.D_6$ x 5, $C_2^4:S_4$ x 4, $C_2^2\wr S_3$ x 4, $C_2\wr S_3$ x 4, $C_2^5:C_{12}$ x 3, $C_2^2.\GL(2,\mathbb{Z}/4)$ x 3, $\GL(2,\mathbb{Z}/4):C_2^2$ x 3, $C_2^5:D_6$ x 3, $C_2^6:C_6$ x 3, $C_2^2:\GL(2,\mathbb{Z}/4)$ x 3, $C_2^5:D_6$ x 3, $C_2^3:C_4\times D_6$ x 3, $C_2^4:D_{12}$ x 3, $C_2\wr C_6$ x 2, $C_2^4:D_{12}$ x 2, $C_2^5.D_6$ x 2, $C_2^4:S_4$ x 2, $C_2^5:A_4$ x 2, $C_2^4:D_{12}$ x 2, $C_2^5.D_6$ x 2, $C_2^5:A_4$ x 2, $(C_2^2\times D_4):A_4$, $C_4\times C_2^3:A_4$, $C_2^4.S_4$, $C_2^4\times S_4$, $D_{12}:C_2^4$, $C_2^5:A_4$, $C_2^6:C_6$, $A_4\times D_4:C_2^2$, $\GL(2,\mathbb{Z}/4):C_2^2$, $\GL(2,\mathbb{Z}/4):C_2^2$, $C_2^5:A_4$, $C_4\times Q_8:A_4$, $C_2^4.S_4$, $C_2\wr C_2^2\times C_6$, $(C_6\times D_4):D_4$ |
| Order 360: $S_3\times A_5$ x 2, $C_3:S_5$ x 2, $C_3\times S_5$ x 2, $C_6\times A_5$ |
| Order 336: $C_2\times \GL(3,2)$ x 4, $F_8:C_6$ x 3, $S_3\times F_8$ x 2, $C_6\times F_8$ |
| Order 320: $(C_2^2\times F_5):C_4$ x 6, $D_{10}.C_2^4$ x 5, $(C_2\times D_{20}):C_4$ x 5, $C_{10}.(C_4\times D_4)$ x 5, $D_{10}:C_4^2$ x 5, $C_2^4:D_{10}$ x 3, $C_2^3:C_4\times D_5$ x 3, $C_2^3:D_{20}$ x 3, $D_{10}.C_2^4$ x 3, $C_2^4:D_{10}$ x 3, $C_2^4:F_5$ x 3, $(C_4\times D_{10}):C_4$ x 3, $C_2\wr C_2^2\times C_5$, $(C_2\times C_{20}):D_4$, $C_2^4\times F_5$, $D_{20}:C_2^3$, $D_{10}.C_2^4$, $D_{10}.C_2^4$ |
| Order 288: $D_6\times S_4$ x 39, $A_4\times S_4$ x 16, $\PSOPlus(4,3)$ x 8, $(C_2\times C_6):S_4$ x 4, $C_3\times C_2^2:S_4$ x 4, $C_2\times A_4\times D_6$ x 3, $C_2\times C_6:S_4$ x 3, $C_2\times C_6\times S_4$ x 3, $C_2\times A_4^2$ x 3, $C_3\times C_2^3:A_4$ x 2, $(C_2\times D_6):A_4$ x 2, $S_3\times C_2^2:A_4$ x 2, $C_3\times Q_8:A_4$, $D_6\times \SL(2,3)$, $A_4\times \SL(2,3)$, $C_2^5:C_3^2$ |
| Order 280: $C_5\times F_8$ |
| Order 256: $C_2^5:D_4$ x 6, $C_2^5:D_4$ x 6, $C_2^2:D_4^2$ x 3, $C_2^2.D_4^2$ x 3, $C_2^2.D_4^2$ x 3, $C_2^2.D_4^2$ x 3, $C_2^5:D_4$ x 2, $C_2^5:D_4$ x 2, $D_4^2:C_2^2$, $C_2^4.C_2^4$, $C_2^4.C_2^4$ |
| Order 252: $C_{42}:C_6$, $A_4\times C_7:C_3$ |
| Order 240: $C_2\times S_5$ x 19, $D_5\times S_4$ x 14, $C_2^2\times A_5$ x 10, $A_4\times F_5$ x 8, $A_4:F_5$ x 8, $C_4\times A_5$ x 3, $A_5:C_4$ x 3, $A_4\times D_{10}$ x 3, $C_{10}:S_4$ x 3, $C_{10}\times S_4$ x 3, $C_2^4:C_{15}$, $D_6\times F_5$, $D_5\times \SL(2,3)$ |
| Order 224: $C_2^2\times F_8$ x 2, $C_4\times F_8$ |
| Order 210: $C_{35}:C_6$ |
| Order 192: $D_4\times S_4$ x 43, $C_2^4:D_6$ x 32, $C_2^4:D_6$ x 24, $C_2^3:C_4\times S_3$ x 24, $C_2^3:D_{12}$ x 24, $C_2^3:S_4$ x 16, $C_2\times \GL(2,\mathbb{Z}/4)$ x 16, $C_2^3:S_4$ x 15, $C_2^3\times S_4$ x 15, $D_{12}:C_2^3$ x 10, $C_3\times C_2\wr C_2^2$ x 8, $(C_2\times C_{12}):D_4$ x 8, $C_2^5:C_6$ x 8, $C_2^3:S_4$ x 8, $C_2^3:D_{12}$ x 8, $C_2^4.D_6$ x 8, $C_2.\GL(2,\mathbb{Z}/4)$ x 7, $C_2^3.D_{12}$ x 6, $C_2^4:A_4$ x 6, $C_2^4:C_{12}$ x 5, $C_2.\GL(2,\mathbb{Z}/4)$ x 5, $C_{12}:C_2^4$ x 5, $C_2^4:D_6$ x 5, $C_2^3:D_{12}$ x 5, $C_2^4.D_6$ x 5, $C_2^4:C_{12}$ x 3, $C_2^4.D_6$ x 3, $D_{12}:C_2^3$ x 3, $C_2^4:A_4$ x 3, $D_4:S_4$ x 3, $\GL(2,\mathbb{Z}/4):C_2$ x 3, $C_2^5:C_6$ x 3, $C_2^4:D_6$ x 3, $C_2^2\wr C_3$ x 2, $C_2^3.S_4$ x 2, $C_2^4:C_{12}$, $D_6\times C_2^4$, $C_2^4:A_4$, $A_4\times C_2^4$, $C_{12}.C_2^4$, $D_{12}:C_2^3$, $D_{12}:C_2^3$, $C_2^4:C_{12}$, $A_4\times D_4:C_2$, $Q_8:S_4$, $Q_8\times S_4$, $D_4\times \SL(2,3)$ |
| Order 180: $\GL(2,4)$ |
| Order 168: $F_8:C_3$ x 2, $\PSL(2,7)$ x 2, $C_7\times S_4$, $C_3\times F_8$, $C_{28}:C_6$ |
| Order 160: $D_4\times F_5$ x 20, $C_2^3:F_5$ x 15, $C_2^3\times F_5$ x 9, $C_{10}.C_4^2$ x 7, $C_2^2.D_{20}$ x 6, $D_4\times D_{10}$ x 5, $D_{10}.D_4$ x 5, $C_{10}:C_4^2$ x 5, $D_{10}:D_4$ x 5, $C_2^2:D_{20}$ x 5, $D_{10}.D_4$ x 5, $C_2^3:F_5$ x 3, $D_{10}.D_4$ x 3, $C_2^3:C_{20}$ x 3, $C_2^3.D_{10}$ x 3, $D_4:D_{10}$ x 3, $D_{10}.C_2^3$ x 3, $C_2^4:C_{10}$ x 3, $C_2^4:D_5$ x 3, $Q_8\times F_5$ x 2, $C_2^3\times D_{10}$, $C_{10}.C_2^4$, $D_4:D_{10}$, $D_4:D_{10}$ |
| Order 120: $S_5$ |
| Order 60: $A_5$ |
| Order 9: $C_3^2$ |
| Order 8: $C_2^3$ |
| Order 7: $C_7$ |
| Order 5: $C_5$ |
| Order 1: $C_1$ |