Properties

Label 1600000000.hv
Order \( 2^{12} \cdot 5^{8} \)
Exponent \( 2^{4} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $40$
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,28,15,18,4,26,14,20,2,29,13,17,5,27,12,19,3,30,11,16)(6,31,39,25,10,35,38,22,9,34,37,24,8,33,36,21,7,32,40,23), (1,8,11,36)(2,7,15,38,4,10,13,37,5,9,12,39,3,6,14,40)(16,21,30,35,20,23,27,34,18,22,26,32,19,25,29,33)(17,24,28,31), (1,31)(2,35)(3,34)(4,33)(5,32)(6,16,9,18)(7,20,8,19)(10,17)(11,24,14,25)(12,21,13,23)(15,22)(26,37,29,39,27,36,30,38,28,40) >;
 
Copy content gap:G := Group( (1,28,15,18,4,26,14,20,2,29,13,17,5,27,12,19,3,30,11,16)(6,31,39,25,10,35,38,22,9,34,37,24,8,33,36,21,7,32,40,23), (1,8,11,36)(2,7,15,38,4,10,13,37,5,9,12,39,3,6,14,40)(16,21,30,35,20,23,27,34,18,22,26,32,19,25,29,33)(17,24,28,31), (1,31)(2,35)(3,34)(4,33)(5,32)(6,16,9,18)(7,20,8,19)(10,17)(11,24,14,25)(12,21,13,23)(15,22)(26,37,29,39,27,36,30,38,28,40) );
 
Copy content sage:G = PermutationGroup(['(1,28,15,18,4,26,14,20,2,29,13,17,5,27,12,19,3,30,11,16)(6,31,39,25,10,35,38,22,9,34,37,24,8,33,36,21,7,32,40,23)', '(1,8,11,36)(2,7,15,38,4,10,13,37,5,9,12,39,3,6,14,40)(16,21,30,35,20,23,27,34,18,22,26,32,19,25,29,33)(17,24,28,31)', '(1,31)(2,35)(3,34)(4,33)(5,32)(6,16,9,18)(7,20,8,19)(10,17)(11,24,14,25)(12,21,13,23)(15,22)(26,37,29,39,27,36,30,38,28,40)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(773868944511600089810185512468133285331618287462095210866229539452638733378461676622195875153235880787722130364757299456017798566663666018736577127066355266073148248673092078844771483838027191119261020600521400631975181417173931114515302764830364389619361534543627184180761174181211937620843210196295064800592881837947082865716267389669802080694078901487659573461264936530012301109766552897593978943830037357031902664507085914626243759396007718543797440948214302013786620483246745636018540063475909947597818159366393397100147500657505799296878877701817478976996514684022451953540857072530086855371191027201724303067864078380861359792489987778175189103129969167341359763960477852789478085697561320680085108525653688273522139572702262132223748648500538577117915772971140189548768380868552650254761225899765943096628537935587977233944223336907135353286451044523377369106883057890256143418448310333899118962186203488458450994189138721507794919508959941319166441137024180121583452095083551464859820775465630212735302455378284794990417234919722255145681958871814750932711134592066259472421541900215182099909749985607618662567538937551245202423545541936817563468052357849058914974156672794578248435146274077889211117548879189676748481948906180549918211297150454004539919193139452421763470375842195640936436416365436037182777113575012436530512833888535766753309842510384435039982896680920738251100859892684633570978700621969512697931752863096051325881594766638250249886199232986275730934925519133339850818171402110553374661448276641706382381495295,1600000000)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.13; h = G.15; i = G.17; j = G.18; k = G.19; l = G.20;
 

Group information

Description:$C_5^4.D_5^4.(C_2^5.D_4)$
Order: \(1600000000\)\(\medspace = 2^{12} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(80\)\(\medspace = 2^{4} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(25600000000\)\(\medspace = 2^{16} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10 16 20 40
Elements 1 546975 107100000 390624 240000000 61562400 400000000 630400000 160000000 1600000000
Conjugacy classes   1 12 85 151 18 213 8 288 8 784
Divisions 1 12 61 151 9 213 2 169 4 622
Autjugacy classes 1 11 58 54 10 99 1 147 4 385

Minimal presentations

Permutation degree:$40$
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid d^{4}=f^{20}=g^{10}=h^{10}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([20, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 5, 2, 5, 2, 5, 5, 5, 5, 5, 40, 10100848661, 6974197202, 3620499262, 162, 94360786563, 18313943383, 153270463, 107744417604, 41759228824, 33627018444, 3137920264, 4658914084, 162528674885, 2741353945, 12987341805, 11798289185, 7180518085, 345, 8825600006, 11379200026, 36200686, 17852281506, 11518981126, 184621479687, 84903646747, 22653690287, 29112593987, 370928087, 260469227, 2552873407, 467, 133403120648, 139794606748, 60579233328, 21738539588, 16118985688, 8616964428, 1254423008, 55125168, 156325448009, 16883140829, 34409062449, 14033184069, 16495443289, 759144109, 21316129, 1578678149, 418921169, 589, 253304832010, 73757016990, 43567194930, 6803948870, 18882167130, 1500628910, 33871330, 437751750, 132530370, 650, 2715648011, 15974400031, 78489937971, 307271, 15244815451, 115311, 76931, 38551, 78353880812, 1154816032, 41362880052, 11933376072, 25780144092, 63024112, 11336132, 2494934152, 375674172, 1783792, 335612, 772, 288872120333, 372736033, 46018560053, 5376073, 17884160093, 23744113, 23296133, 801920153, 5824173, 593793, 582613, 90089568014, 54690057634, 32739840054, 22204800074, 19610880094, 1111200114, 10800134, 1635240154, 419700174, 29220194, 26670214, 57254, 31774, 894, 72089600015, 104857600035, 622592055, 61440075, 205824095, 15360115, 10240135, 6912155, 2560175, 256195, 256215, 25855, 345550888976, 1323008036, 55705600056, 326400076, 21705600096, 108800116, 972400156, 2720196, 13896, 366796800017, 235468892197, 16588800057, 1152000077, 1152000097, 748800117, 72000157, 72000177, 56160197, 7200217, 72297, 528836551698, 1004902438, 99712000058, 6566400078, 17145600098, 182400118, 4446000158, 391400178, 12160198, 39140218, 380298, 144392192019, 204124364839, 153600000059, 49920000079, 8384000099, 6176000119, 2016000159, 520000179, 428800199, 52000219, 20960259, 2000299]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.3, G.5, G.6, G.8, G.10, G.13, G.15, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "f4", "g", "g2", "h", "h2", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(773868944511600089810185512468133285331618287462095210866229539452638733378461676622195875153235880787722130364757299456017798566663666018736577127066355266073148248673092078844771483838027191119261020600521400631975181417173931114515302764830364389619361534543627184180761174181211937620843210196295064800592881837947082865716267389669802080694078901487659573461264936530012301109766552897593978943830037357031902664507085914626243759396007718543797440948214302013786620483246745636018540063475909947597818159366393397100147500657505799296878877701817478976996514684022451953540857072530086855371191027201724303067864078380861359792489987778175189103129969167341359763960477852789478085697561320680085108525653688273522139572702262132223748648500538577117915772971140189548768380868552650254761225899765943096628537935587977233944223336907135353286451044523377369106883057890256143418448310333899118962186203488458450994189138721507794919508959941319166441137024180121583452095083551464859820775465630212735302455378284794990417234919722255145681958871814750932711134592066259472421541900215182099909749985607618662567538937551245202423545541936817563468052357849058914974156672794578248435146274077889211117548879189676748481948906180549918211297150454004539919193139452421763470375842195640936436416365436037182777113575012436530512833888535766753309842510384435039982896680920738251100859892684633570978700621969512697931752863096051325881594766638250249886199232986275730934925519133339850818171402110553374661448276641706382381495295,1600000000); a := G.1; b := G.3; c := G.5; d := G.6; e := G.8; f := G.10; g := G.13; h := G.15; i := G.17; j := G.18; k := G.19; l := G.20;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(773868944511600089810185512468133285331618287462095210866229539452638733378461676622195875153235880787722130364757299456017798566663666018736577127066355266073148248673092078844771483838027191119261020600521400631975181417173931114515302764830364389619361534543627184180761174181211937620843210196295064800592881837947082865716267389669802080694078901487659573461264936530012301109766552897593978943830037357031902664507085914626243759396007718543797440948214302013786620483246745636018540063475909947597818159366393397100147500657505799296878877701817478976996514684022451953540857072530086855371191027201724303067864078380861359792489987778175189103129969167341359763960477852789478085697561320680085108525653688273522139572702262132223748648500538577117915772971140189548768380868552650254761225899765943096628537935587977233944223336907135353286451044523377369106883057890256143418448310333899118962186203488458450994189138721507794919508959941319166441137024180121583452095083551464859820775465630212735302455378284794990417234919722255145681958871814750932711134592066259472421541900215182099909749985607618662567538937551245202423545541936817563468052357849058914974156672794578248435146274077889211117548879189676748481948906180549918211297150454004539919193139452421763470375842195640936436416365436037182777113575012436530512833888535766753309842510384435039982896680920738251100859892684633570978700621969512697931752863096051325881594766638250249886199232986275730934925519133339850818171402110553374661448276641706382381495295,1600000000)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.13; h = G.15; i = G.17; j = G.18; k = G.19; l = G.20;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(773868944511600089810185512468133285331618287462095210866229539452638733378461676622195875153235880787722130364757299456017798566663666018736577127066355266073148248673092078844771483838027191119261020600521400631975181417173931114515302764830364389619361534543627184180761174181211937620843210196295064800592881837947082865716267389669802080694078901487659573461264936530012301109766552897593978943830037357031902664507085914626243759396007718543797440948214302013786620483246745636018540063475909947597818159366393397100147500657505799296878877701817478976996514684022451953540857072530086855371191027201724303067864078380861359792489987778175189103129969167341359763960477852789478085697561320680085108525653688273522139572702262132223748648500538577117915772971140189548768380868552650254761225899765943096628537935587977233944223336907135353286451044523377369106883057890256143418448310333899118962186203488458450994189138721507794919508959941319166441137024180121583452095083551464859820775465630212735302455378284794990417234919722255145681958871814750932711134592066259472421541900215182099909749985607618662567538937551245202423545541936817563468052357849058914974156672794578248435146274077889211117548879189676748481948906180549918211297150454004539919193139452421763470375842195640936436416365436037182777113575012436530512833888535766753309842510384435039982896680920738251100859892684633570978700621969512697931752863096051325881594766638250249886199232986275730934925519133339850818171402110553374661448276641706382381495295,1600000000)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.13; h = G.15; i = G.17; j = G.18; k = G.19; l = G.20;
 
Permutation group:Degree $40$ $\langle(1,28,15,18,4,26,14,20,2,29,13,17,5,27,12,19,3,30,11,16)(6,31,39,25,10,35,38,22,9,34,37,24,8,33,36,21,7,32,40,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,28,15,18,4,26,14,20,2,29,13,17,5,27,12,19,3,30,11,16)(6,31,39,25,10,35,38,22,9,34,37,24,8,33,36,21,7,32,40,23), (1,8,11,36)(2,7,15,38,4,10,13,37,5,9,12,39,3,6,14,40)(16,21,30,35,20,23,27,34,18,22,26,32,19,25,29,33)(17,24,28,31), (1,31)(2,35)(3,34)(4,33)(5,32)(6,16,9,18)(7,20,8,19)(10,17)(11,24,14,25)(12,21,13,23)(15,22)(26,37,29,39,27,36,30,38,28,40) >;
 
Copy content gap:G := Group( (1,28,15,18,4,26,14,20,2,29,13,17,5,27,12,19,3,30,11,16)(6,31,39,25,10,35,38,22,9,34,37,24,8,33,36,21,7,32,40,23), (1,8,11,36)(2,7,15,38,4,10,13,37,5,9,12,39,3,6,14,40)(16,21,30,35,20,23,27,34,18,22,26,32,19,25,29,33)(17,24,28,31), (1,31)(2,35)(3,34)(4,33)(5,32)(6,16,9,18)(7,20,8,19)(10,17)(11,24,14,25)(12,21,13,23)(15,22)(26,37,29,39,27,36,30,38,28,40) );
 
Copy content sage:G = PermutationGroup(['(1,28,15,18,4,26,14,20,2,29,13,17,5,27,12,19,3,30,11,16)(6,31,39,25,10,35,38,22,9,34,37,24,8,33,36,21,7,32,40,23)', '(1,8,11,36)(2,7,15,38,4,10,13,37,5,9,12,39,3,6,14,40)(16,21,30,35,20,23,27,34,18,22,26,32,19,25,29,33)(17,24,28,31)', '(1,31)(2,35)(3,34)(4,33)(5,32)(6,16,9,18)(7,20,8,19)(10,17)(11,24,14,25)(12,21,13,23)(15,22)(26,37,29,39,27,36,30,38,28,40)'])
 
Transitive group: 40T241199 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.C_2^4.C_2^4)$ . $Q_{16}$ (2) $(C_5^4.D_5^4)$ . $(C_2^5.D_4)$ $(C_5^4.D_5^4)$ . $(C_2^5.D_4)$ $(C_5^8.C_2^5)$ . $(C_2^4.D_4)$ (2) all 80

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 168 normal subgroups (124 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.C_2^4:C_2^2.C_2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 15 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $784 \times 784$ character table is not available for this group.

Rational character table

The $622 \times 622$ rational character table is not available for this group.