Properties

Label 1600000000.bwq
Order \( 2^{12} \cdot 5^{8} \)
Exponent \( 2^{3} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 5^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $40$
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,6,14,38,3,10,15,36,5,9,11,39,2,8,12,37,4,7,13,40)(16,24,30,32,17,21,27,35,18,23,29,33,19,25,26,31,20,22,28,34), (1,26,2,28)(3,30,5,29)(4,27)(6,23,9,22,8,24,10,25)(7,21)(11,16)(12,19,13,17,15,18,14,20)(31,37,33,38)(32,40)(34,36,35,39), (1,6,11,36,4,7,12,39,2,8,13,37,5,9,14,40,3,10,15,38)(16,24,28,31)(17,25,30,32)(18,21,27,33)(19,22,29,34)(20,23,26,35) >;
 
Copy content gap:G := Group( (1,6,14,38,3,10,15,36,5,9,11,39,2,8,12,37,4,7,13,40)(16,24,30,32,17,21,27,35,18,23,29,33,19,25,26,31,20,22,28,34), (1,26,2,28)(3,30,5,29)(4,27)(6,23,9,22,8,24,10,25)(7,21)(11,16)(12,19,13,17,15,18,14,20)(31,37,33,38)(32,40)(34,36,35,39), (1,6,11,36,4,7,12,39,2,8,13,37,5,9,14,40,3,10,15,38)(16,24,28,31)(17,25,30,32)(18,21,27,33)(19,22,29,34)(20,23,26,35) );
 
Copy content sage:G = PermutationGroup(['(1,6,14,38,3,10,15,36,5,9,11,39,2,8,12,37,4,7,13,40)(16,24,30,32,17,21,27,35,18,23,29,33,19,25,26,31,20,22,28,34)', '(1,26,2,28)(3,30,5,29)(4,27)(6,23,9,22,8,24,10,25)(7,21)(11,16)(12,19,13,17,15,18,14,20)(31,37,33,38)(32,40)(34,36,35,39)', '(1,6,11,36,4,7,12,39,2,8,13,37,5,9,14,40,3,10,15,38)(16,24,28,31)(17,25,30,32)(18,21,27,33)(19,22,29,34)(20,23,26,35)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(748910330110408753243850853218866236156935593561456409201650523451313026834711303290239236110254397426626803856828579648225649958288338511814852264046248462119233661111045484458766709210609226199058651342031613795411912775238192301921285593800501162607430402254679284601215762839212497753157439578944000148958481713938175507965137410783133054279514748558807441169736199980734147618476013687112670308714501071446560537995396072546234288877763565632388226977339951238876853855522845116822789015005291980724710417723710533941332938978905636083917094999013005593229891301678778762481146294705742491849724110073020290488066718320688788892870791669663068291024578146306499262209756556094306912412277530888609756863625808179129388722807144617814189297043903469906536894185616288443837237978656496314248279182270506637608994840950544465885915889971780167749518545404460391074108472781026868641617767571628008904863811207687066582182602971545902201837457917623314987349416757456170767093763618514928863499204631156163888119564067499030920847259204222770399855552734806577366151563363772382107384070444308344645494119646613027606440558994615940966136146406023722552141303057336501796672213384421439011204091042095545335549539294078340056823720187620059405766869793550785859150956645109854375360781145509411108899394577157144026615666323446374264818481961214806433092226688229768427431173615518958503197166219619794183893594885845737845304815396112062042768110352968649515781076761753614456386598389075667480061824833979296772099600341540830066982989753832871716632864314708361221889015807,1600000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.10; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20;
 

Group information

Description:$C_5^8.C_4^3.C_2^3.D_4$
Order: \(1600000000\)\(\medspace = 2^{12} \cdot 5^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(25600000000\)\(\medspace = 2^{16} \cdot 5^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $C_5$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 8 10 20 40
Elements 1 546975 107100000 390624 384000000 61562400 630400000 416000000 1600000000
Conjugacy classes   1 13 98 153 48 217 302 48 880
Divisions 1 13 64 153 17 217 167 14 646
Autjugacy classes 1 11 58 54 14 99 147 9 393

Minimal presentations

Permutation degree:$40$
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid e^{4}=f^{20}=g^{10}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([20, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 5, 5, 5, 5, 5, 5, 5, 40, 28923125781, 10341942962, 44137347982, 162, 13164728963, 48052633943, 11839306303, 74883125604, 31443170824, 21445767644, 13134617864, 284, 19656656645, 71003998105, 46483177965, 20630415905, 5712792105, 50283583846, 45226359946, 13869971406, 5112613026, 10206893286, 1039001986, 1284380286, 46997360647, 47638149147, 29919196207, 14263953987, 2081427287, 1562737387, 3818671167, 467, 284104627208, 68202109468, 15909868848, 20070334148, 8790016408, 8076143628, 3174117968, 299374164809, 80802560029, 63471859249, 26392281669, 1584480089, 7484073709, 54616129, 2286442549, 1070467769, 589, 242266393610, 64241408030, 65988172850, 4279390790, 2076307290, 1715950830, 592996930, 5430, 8090, 650, 196254105611, 116342784031, 77539737651, 122951, 9695232091, 46191, 3635712131, 11671, 7851, 379721948332, 132288033312, 538869812, 45759001672, 8177765532, 10392262512, 3415003412, 2052606552, 679941772, 146634992, 334024812, 772, 102467993613, 33216512033, 30864117813, 33923993673, 26397952093, 8480998513, 3248448133, 134553, 89773, 706764993, 353365813, 206235648014, 51241574434, 58371072054, 48468480074, 18927513694, 2880114, 4731859334, 3029280154, 480174, 757260194, 189330214, 28407254, 133202575375, 79144550435, 80715776055, 61440075, 2356838495, 3426304115, 2741964935, 3343104155, 2560175, 214144195, 640215, 64255, 495566766096, 234382704676, 22829025336, 31220377676, 9888745056, 7179712116, 3032517256, 885686556, 13600176, 829953796, 177289816, 27064256, 491265146897, 18844876837, 133258383417, 39814963277, 15649689697, 496512117, 373132937, 3657484957, 72000177, 125755397, 212227417, 15048257, 592662446098, 286458859558, 80527022138, 48092313678, 9545697378, 2245952118, 5347615498, 2420934558, 380000178, 559861798, 484735818, 49476258, 179724288019, 292360601639, 147618611259, 31012864079, 12118630499, 384000119, 1694860939, 3009856159, 2000000179, 823184199, 446664219, 58800259]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.3, G.5, G.7, G.8, G.10, G.13, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "e", "e2", "f", "f2", "f4", "g", "g2", "h", "i", "j", "k", "l", "m"]);
 
Copy content gap:G := PcGroupCode(748910330110408753243850853218866236156935593561456409201650523451313026834711303290239236110254397426626803856828579648225649958288338511814852264046248462119233661111045484458766709210609226199058651342031613795411912775238192301921285593800501162607430402254679284601215762839212497753157439578944000148958481713938175507965137410783133054279514748558807441169736199980734147618476013687112670308714501071446560537995396072546234288877763565632388226977339951238876853855522845116822789015005291980724710417723710533941332938978905636083917094999013005593229891301678778762481146294705742491849724110073020290488066718320688788892870791669663068291024578146306499262209756556094306912412277530888609756863625808179129388722807144617814189297043903469906536894185616288443837237978656496314248279182270506637608994840950544465885915889971780167749518545404460391074108472781026868641617767571628008904863811207687066582182602971545902201837457917623314987349416757456170767093763618514928863499204631156163888119564067499030920847259204222770399855552734806577366151563363772382107384070444308344645494119646613027606440558994615940966136146406023722552141303057336501796672213384421439011204091042095545335549539294078340056823720187620059405766869793550785859150956645109854375360781145509411108899394577157144026615666323446374264818481961214806433092226688229768427431173615518958503197166219619794183893594885845737845304815396112062042768110352968649515781076761753614456386598389075667480061824833979296772099600341540830066982989753832871716632864314708361221889015807,1600000000); a := G.1; b := G.3; c := G.5; d := G.7; e := G.8; f := G.10; g := G.13; h := G.15; i := G.16; j := G.17; k := G.18; l := G.19; m := G.20;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(748910330110408753243850853218866236156935593561456409201650523451313026834711303290239236110254397426626803856828579648225649958288338511814852264046248462119233661111045484458766709210609226199058651342031613795411912775238192301921285593800501162607430402254679284601215762839212497753157439578944000148958481713938175507965137410783133054279514748558807441169736199980734147618476013687112670308714501071446560537995396072546234288877763565632388226977339951238876853855522845116822789015005291980724710417723710533941332938978905636083917094999013005593229891301678778762481146294705742491849724110073020290488066718320688788892870791669663068291024578146306499262209756556094306912412277530888609756863625808179129388722807144617814189297043903469906536894185616288443837237978656496314248279182270506637608994840950544465885915889971780167749518545404460391074108472781026868641617767571628008904863811207687066582182602971545902201837457917623314987349416757456170767093763618514928863499204631156163888119564067499030920847259204222770399855552734806577366151563363772382107384070444308344645494119646613027606440558994615940966136146406023722552141303057336501796672213384421439011204091042095545335549539294078340056823720187620059405766869793550785859150956645109854375360781145509411108899394577157144026615666323446374264818481961214806433092226688229768427431173615518958503197166219619794183893594885845737845304815396112062042768110352968649515781076761753614456386598389075667480061824833979296772099600341540830066982989753832871716632864314708361221889015807,1600000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.10; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(748910330110408753243850853218866236156935593561456409201650523451313026834711303290239236110254397426626803856828579648225649958288338511814852264046248462119233661111045484458766709210609226199058651342031613795411912775238192301921285593800501162607430402254679284601215762839212497753157439578944000148958481713938175507965137410783133054279514748558807441169736199980734147618476013687112670308714501071446560537995396072546234288877763565632388226977339951238876853855522845116822789015005291980724710417723710533941332938978905636083917094999013005593229891301678778762481146294705742491849724110073020290488066718320688788892870791669663068291024578146306499262209756556094306912412277530888609756863625808179129388722807144617814189297043903469906536894185616288443837237978656496314248279182270506637608994840950544465885915889971780167749518545404460391074108472781026868641617767571628008904863811207687066582182602971545902201837457917623314987349416757456170767093763618514928863499204631156163888119564067499030920847259204222770399855552734806577366151563363772382107384070444308344645494119646613027606440558994615940966136146406023722552141303057336501796672213384421439011204091042095545335549539294078340056823720187620059405766869793550785859150956645109854375360781145509411108899394577157144026615666323446374264818481961214806433092226688229768427431173615518958503197166219619794183893594885845737845304815396112062042768110352968649515781076761753614456386598389075667480061824833979296772099600341540830066982989753832871716632864314708361221889015807,1600000000)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.10; g = G.13; h = G.15; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20;
 
Permutation group:Degree $40$ $\langle(1,6,14,38,3,10,15,36,5,9,11,39,2,8,12,37,4,7,13,40)(16,24,30,32,17,21,27,35,18,23,29,33,19,25,26,31,20,22,28,34) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (1,6,14,38,3,10,15,36,5,9,11,39,2,8,12,37,4,7,13,40)(16,24,30,32,17,21,27,35,18,23,29,33,19,25,26,31,20,22,28,34), (1,26,2,28)(3,30,5,29)(4,27)(6,23,9,22,8,24,10,25)(7,21)(11,16)(12,19,13,17,15,18,14,20)(31,37,33,38)(32,40)(34,36,35,39), (1,6,11,36,4,7,12,39,2,8,13,37,5,9,14,40,3,10,15,38)(16,24,28,31)(17,25,30,32)(18,21,27,33)(19,22,29,34)(20,23,26,35) >;
 
Copy content gap:G := Group( (1,6,14,38,3,10,15,36,5,9,11,39,2,8,12,37,4,7,13,40)(16,24,30,32,17,21,27,35,18,23,29,33,19,25,26,31,20,22,28,34), (1,26,2,28)(3,30,5,29)(4,27)(6,23,9,22,8,24,10,25)(7,21)(11,16)(12,19,13,17,15,18,14,20)(31,37,33,38)(32,40)(34,36,35,39), (1,6,11,36,4,7,12,39,2,8,13,37,5,9,14,40,3,10,15,38)(16,24,28,31)(17,25,30,32)(18,21,27,33)(19,22,29,34)(20,23,26,35) );
 
Copy content sage:G = PermutationGroup(['(1,6,14,38,3,10,15,36,5,9,11,39,2,8,12,37,4,7,13,40)(16,24,30,32,17,21,27,35,18,23,29,33,19,25,26,31,20,22,28,34)', '(1,26,2,28)(3,30,5,29)(4,27)(6,23,9,22,8,24,10,25)(7,21)(11,16)(12,19,13,17,15,18,14,20)(31,37,33,38)(32,40)(34,36,35,39)', '(1,6,11,36,4,7,12,39,2,8,13,37,5,9,14,40,3,10,15,38)(16,24,28,31)(17,25,30,32)(18,21,27,33)(19,22,29,34)(20,23,26,35)'])
 
Transitive group: 40T242265 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^8.C_4^3.C_2^3)$ . $D_4$ (2) $(C_5^8.C_4^3.C_2^3)$ . $D_4$ (2) $(C_5^8.C_2^4.C_2^4)$ . $Q_{16}$ (2) $(C_5^4.D_5^4)$ . $(C_2^5.D_4)$ all 101

Elements of the group are displayed as permutations of degree 40.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 180 normal subgroups (122 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $(C_2^4\times C_4).C_2^4.C_2^2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^8$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 15 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $880 \times 880$ character table is not available for this group.

Rational character table

The $646 \times 646$ rational character table is not available for this group.