| Permutation group: | Degree $399$
$\langle(2,5)(3,6)(4,7)(8,20)(9,21)(10,22)(11,15)(12,18)(13,23)(14,24)(16,19)(17,25) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 399 | (2,5)(3,6)(4,7)(8,20)(9,21)(10,22)(11,15)(12,18)(13,23)(14,24)(16,19)(17,25)(26,54)(27,55)(28,56)(29,45)(30,51)(31,57)(32,58)(33,52)(34,59)(35,46)(36,41)(37,44)(38,49)(39,60)(40,61)(42,53)(43,62)(47,50)(48,63)(64,115)(65,116)(66,117)(67,101)(68,111)(69,118)(70,119)(71,112)(72,120)(73,102)(74,95)(75,100)(76,108)(77,121)(78,122)(79,113)(80,123)(81,109)(82,124)(83,103)(84,96)(85,91)(86,94)(87,99)(88,106)(89,125)(90,126)(92,114)(93,127)(97,110)(98,128)(104,107)(105,129)(130,195)(131,170)(132,203)(133,191)(134,161)(135,204)(136,205)(137,154)(138,206)(139,192)(140,183)(141,190)(142,147)(143,207)(144,208)(145,200)(146,209)(148,210)(149,193)(150,184)(151,177)(152,182)(153,189)(155,211)(156,212)(157,201)(158,213)(159,198)(160,214)(162,215)(163,194)(164,185)(165,178)(166,173)(167,176)(168,181)(169,188)(171,216)(172,217)(174,202)(175,218)(179,199)(180,219)(186,197)(187,220)(196,221)(222,258)(223,259)(224,249)(225,285)(226,286)(227,242)(228,287)(229,272)(230,278)(231,236)(232,288)(233,289)(234,282)(235,290)(237,291)(238,273)(239,266)(240,271)(241,277)(243,292)(244,293)(245,283)(246,294)(247,280)(248,295)(250,296)(251,297)(252,274)(253,267)(254,262)(255,265)(256,270)(257,276)(260,298)(261,299)(263,284)(264,300)(268,281)(269,301)(275,302)(279,303)(304,338)(305,339)(306,340)(307,354)(308,323)(309,355)(310,345)(311,350)(312,317)(313,326)(314,356)(315,324)(316,357)(318,358)(319,346)(320,341)(321,344)(322,349)(325,359)(327,360)(328,352)(329,361)(330,362)(331,363)(332,347)(333,342)(334,337)(335,336)(343,353)(348,364)(351,365)(366,382)(367,383)(368,384)(369,390)(370,385)(371,388)(372,375)(373,378)(374,391)(376,392)(377,386)(379,393)(380,394)(381,387)(389,395)(396,397), (398,399), (1,2,8,26,64,130,191,101,45,15,3,9,27,65,131,105,162,183,95,41,13,31,69,135,222,187,250,272,177,91,39,77,143,225,304,275,330,345,266,173,89,155,232,306,366,348,379,385,341,262,171,243,313,284,333,377,392,361,301,337,260,324,283,202,253,319,358,295,219,257,323,282,201,114,165,238,291,214,128,169,242,200,113,53,84,150,210,124,63,88,154,112,52,19,35,73,139,194,104,161,111,51,18,4,10,28,66,132,186,249,190,100,44,14,32,70,136,223,196,251,278,182,94,40,78,144,226,305,279,331,350,271,176,90,156,233,307,367,351,380,388,344,265,172,244,314,368,396,389,391,360,300,336,261,325,373,353,381,390,357,294,218,256,322,372,352,281,332,355,290,213,127,168,241,312,280,199,252,287,209,123,62,87,153,231,198,110,164,206,120,59,25,38,76,142,109,50,83,149,193,103,47,81,147,108,49,17,34,72,138,185,97,159,236,189,99,43,80,146,228,274,179,247,317,277,181,93,158,235,309,347,268,328,375,349,270,175,246,316,369,387,343,378,359,299,335,264,327,374,395,397,384,356,293,217,255,321,371,394,365,383,354,289,212,126,167,240,311,363,303,339,286,208,122,61,86,152,230,297,221,259,205,119,58,24,37,75,141,224,197,203,117,56,22,7,12,30,68,134,107,163,192,102,46,16,33,71,137,106,48,82,148,184,96,42,79,145,227,188,98,160,237,273,178,92,157,234,308,276,180,248,318,346,267,174,245,315,298,334,269,329,376,386,342,263,326,292,216,254,320,370,393,364,382,340,288,211,125,166,239,310,362,302,338,285,207,121,60,85,151,229,296,220,258,204,118,57,23,36,74,140,215,129,170,116,55,21,6,11,29,67,133,195,115,54,20,5) >;
gap:G := Group( (2,5)(3,6)(4,7)(8,20)(9,21)(10,22)(11,15)(12,18)(13,23)(14,24)(16,19)(17,25)(26,54)(27,55)(28,56)(29,45)(30,51)(31,57)(32,58)(33,52)(34,59)(35,46)(36,41)(37,44)(38,49)(39,60)(40,61)(42,53)(43,62)(47,50)(48,63)(64,115)(65,116)(66,117)(67,101)(68,111)(69,118)(70,119)(71,112)(72,120)(73,102)(74,95)(75,100)(76,108)(77,121)(78,122)(79,113)(80,123)(81,109)(82,124)(83,103)(84,96)(85,91)(86,94)(87,99)(88,106)(89,125)(90,126)(92,114)(93,127)(97,110)(98,128)(104,107)(105,129)(130,195)(131,170)(132,203)(133,191)(134,161)(135,204)(136,205)(137,154)(138,206)(139,192)(140,183)(141,190)(142,147)(143,207)(144,208)(145,200)(146,209)(148,210)(149,193)(150,184)(151,177)(152,182)(153,189)(155,211)(156,212)(157,201)(158,213)(159,198)(160,214)(162,215)(163,194)(164,185)(165,178)(166,173)(167,176)(168,181)(169,188)(171,216)(172,217)(174,202)(175,218)(179,199)(180,219)(186,197)(187,220)(196,221)(222,258)(223,259)(224,249)(225,285)(226,286)(227,242)(228,287)(229,272)(230,278)(231,236)(232,288)(233,289)(234,282)(235,290)(237,291)(238,273)(239,266)(240,271)(241,277)(243,292)(244,293)(245,283)(246,294)(247,280)(248,295)(250,296)(251,297)(252,274)(253,267)(254,262)(255,265)(256,270)(257,276)(260,298)(261,299)(263,284)(264,300)(268,281)(269,301)(275,302)(279,303)(304,338)(305,339)(306,340)(307,354)(308,323)(309,355)(310,345)(311,350)(312,317)(313,326)(314,356)(315,324)(316,357)(318,358)(319,346)(320,341)(321,344)(322,349)(325,359)(327,360)(328,352)(329,361)(330,362)(331,363)(332,347)(333,342)(334,337)(335,336)(343,353)(348,364)(351,365)(366,382)(367,383)(368,384)(369,390)(370,385)(371,388)(372,375)(373,378)(374,391)(376,392)(377,386)(379,393)(380,394)(381,387)(389,395)(396,397), (398,399), (1,2,8,26,64,130,191,101,45,15,3,9,27,65,131,105,162,183,95,41,13,31,69,135,222,187,250,272,177,91,39,77,143,225,304,275,330,345,266,173,89,155,232,306,366,348,379,385,341,262,171,243,313,284,333,377,392,361,301,337,260,324,283,202,253,319,358,295,219,257,323,282,201,114,165,238,291,214,128,169,242,200,113,53,84,150,210,124,63,88,154,112,52,19,35,73,139,194,104,161,111,51,18,4,10,28,66,132,186,249,190,100,44,14,32,70,136,223,196,251,278,182,94,40,78,144,226,305,279,331,350,271,176,90,156,233,307,367,351,380,388,344,265,172,244,314,368,396,389,391,360,300,336,261,325,373,353,381,390,357,294,218,256,322,372,352,281,332,355,290,213,127,168,241,312,280,199,252,287,209,123,62,87,153,231,198,110,164,206,120,59,25,38,76,142,109,50,83,149,193,103,47,81,147,108,49,17,34,72,138,185,97,159,236,189,99,43,80,146,228,274,179,247,317,277,181,93,158,235,309,347,268,328,375,349,270,175,246,316,369,387,343,378,359,299,335,264,327,374,395,397,384,356,293,217,255,321,371,394,365,383,354,289,212,126,167,240,311,363,303,339,286,208,122,61,86,152,230,297,221,259,205,119,58,24,37,75,141,224,197,203,117,56,22,7,12,30,68,134,107,163,192,102,46,16,33,71,137,106,48,82,148,184,96,42,79,145,227,188,98,160,237,273,178,92,157,234,308,276,180,248,318,346,267,174,245,315,298,334,269,329,376,386,342,263,326,292,216,254,320,370,393,364,382,340,288,211,125,166,239,310,362,302,338,285,207,121,60,85,151,229,296,220,258,204,118,57,23,36,74,140,215,129,170,116,55,21,6,11,29,67,133,195,115,54,20,5) );
sage:G = PermutationGroup(['(2,5)(3,6)(4,7)(8,20)(9,21)(10,22)(11,15)(12,18)(13,23)(14,24)(16,19)(17,25)(26,54)(27,55)(28,56)(29,45)(30,51)(31,57)(32,58)(33,52)(34,59)(35,46)(36,41)(37,44)(38,49)(39,60)(40,61)(42,53)(43,62)(47,50)(48,63)(64,115)(65,116)(66,117)(67,101)(68,111)(69,118)(70,119)(71,112)(72,120)(73,102)(74,95)(75,100)(76,108)(77,121)(78,122)(79,113)(80,123)(81,109)(82,124)(83,103)(84,96)(85,91)(86,94)(87,99)(88,106)(89,125)(90,126)(92,114)(93,127)(97,110)(98,128)(104,107)(105,129)(130,195)(131,170)(132,203)(133,191)(134,161)(135,204)(136,205)(137,154)(138,206)(139,192)(140,183)(141,190)(142,147)(143,207)(144,208)(145,200)(146,209)(148,210)(149,193)(150,184)(151,177)(152,182)(153,189)(155,211)(156,212)(157,201)(158,213)(159,198)(160,214)(162,215)(163,194)(164,185)(165,178)(166,173)(167,176)(168,181)(169,188)(171,216)(172,217)(174,202)(175,218)(179,199)(180,219)(186,197)(187,220)(196,221)(222,258)(223,259)(224,249)(225,285)(226,286)(227,242)(228,287)(229,272)(230,278)(231,236)(232,288)(233,289)(234,282)(235,290)(237,291)(238,273)(239,266)(240,271)(241,277)(243,292)(244,293)(245,283)(246,294)(247,280)(248,295)(250,296)(251,297)(252,274)(253,267)(254,262)(255,265)(256,270)(257,276)(260,298)(261,299)(263,284)(264,300)(268,281)(269,301)(275,302)(279,303)(304,338)(305,339)(306,340)(307,354)(308,323)(309,355)(310,345)(311,350)(312,317)(313,326)(314,356)(315,324)(316,357)(318,358)(319,346)(320,341)(321,344)(322,349)(325,359)(327,360)(328,352)(329,361)(330,362)(331,363)(332,347)(333,342)(334,337)(335,336)(343,353)(348,364)(351,365)(366,382)(367,383)(368,384)(369,390)(370,385)(371,388)(372,375)(373,378)(374,391)(376,392)(377,386)(379,393)(380,394)(381,387)(389,395)(396,397)', '(398,399)', '(1,2,8,26,64,130,191,101,45,15,3,9,27,65,131,105,162,183,95,41,13,31,69,135,222,187,250,272,177,91,39,77,143,225,304,275,330,345,266,173,89,155,232,306,366,348,379,385,341,262,171,243,313,284,333,377,392,361,301,337,260,324,283,202,253,319,358,295,219,257,323,282,201,114,165,238,291,214,128,169,242,200,113,53,84,150,210,124,63,88,154,112,52,19,35,73,139,194,104,161,111,51,18,4,10,28,66,132,186,249,190,100,44,14,32,70,136,223,196,251,278,182,94,40,78,144,226,305,279,331,350,271,176,90,156,233,307,367,351,380,388,344,265,172,244,314,368,396,389,391,360,300,336,261,325,373,353,381,390,357,294,218,256,322,372,352,281,332,355,290,213,127,168,241,312,280,199,252,287,209,123,62,87,153,231,198,110,164,206,120,59,25,38,76,142,109,50,83,149,193,103,47,81,147,108,49,17,34,72,138,185,97,159,236,189,99,43,80,146,228,274,179,247,317,277,181,93,158,235,309,347,268,328,375,349,270,175,246,316,369,387,343,378,359,299,335,264,327,374,395,397,384,356,293,217,255,321,371,394,365,383,354,289,212,126,167,240,311,363,303,339,286,208,122,61,86,152,230,297,221,259,205,119,58,24,37,75,141,224,197,203,117,56,22,7,12,30,68,134,107,163,192,102,46,16,33,71,137,106,48,82,148,184,96,42,79,145,227,188,98,160,237,273,178,92,157,234,308,276,180,248,318,346,267,174,245,315,298,334,269,329,376,386,342,263,326,292,216,254,320,370,393,364,382,340,288,211,125,166,239,310,362,302,338,285,207,121,60,85,151,229,296,220,258,204,118,57,23,36,74,140,215,129,170,116,55,21,6,11,29,67,133,195,115,54,20,5)'])
|