Properties

Label 1528823808.r
Order \( 2^{21} \cdot 3^{6} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{24} \cdot 3^{7} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \cdot 3 \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,32,17,21,12,26,2,31,18,22,11,25)(3,35,13,20,9,27,4,36,14,19,10,28)(5,34,15,23,8,29)(6,33,16,24,7,30), (1,25,10,35,6,30,11,31,3,27,8,34,2,26,9,36,5,29,12,32,4,28,7,33)(13,19,15,24,17,22)(14,20,16,23,18,21), (1,36,9,22,14,27)(2,35,10,21,13,28)(3,33,8,19,15,29)(4,34,7,20,16,30)(5,32,12,23,18,26,6,31,11,24,17,25) >;
 
Copy content gap:G := Group( (1,32,17,21,12,26,2,31,18,22,11,25)(3,35,13,20,9,27,4,36,14,19,10,28)(5,34,15,23,8,29)(6,33,16,24,7,30), (1,25,10,35,6,30,11,31,3,27,8,34,2,26,9,36,5,29,12,32,4,28,7,33)(13,19,15,24,17,22)(14,20,16,23,18,21), (1,36,9,22,14,27)(2,35,10,21,13,28)(3,33,8,19,15,29)(4,34,7,20,16,30)(5,32,12,23,18,26,6,31,11,24,17,25) );
 
Copy content sage:G = PermutationGroup(['(1,32,17,21,12,26,2,31,18,22,11,25)(3,35,13,20,9,27,4,36,14,19,10,28)(5,34,15,23,8,29)(6,33,16,24,7,30)', '(1,25,10,35,6,30,11,31,3,27,8,34,2,26,9,36,5,29,12,32,4,28,7,33)(13,19,15,24,17,22)(14,20,16,23,18,21)', '(1,36,9,22,14,27)(2,35,10,21,13,28)(3,33,8,19,15,29)(4,34,7,20,16,30)(5,32,12,23,18,26,6,31,11,24,17,25)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(434023896113571518590184154573636663684316516576614437232207084700134746484747659422045794112230575108674938024269057002905136828023849831251016347746055079190346536067875532539206276663665063242645997278839932816416565532663454022093152059172504555725116166148492738069811681614682395753467414594981193506952197757248136693820646992070064052224676280148947570589764047763948307333792784978911185755035020255710509130232083741943118486001138314298184131349646034830408251045480181214201000801954453967909301803301310506860898953874643716583154140599300687949818890139400319895915907512277277181900574763376246384719261937114655665564793542364493682016862564614680423369340189770505621024111971155340897804193773515842722768601221513090784779557181942097316005482655107503606881108648981594134831161567288007150217398635316325707631348190458743675424545273576336459591824459864580178176522604107905238103940873977434862867454388567713013305899578189678748963882639665388998325932843218722679505956702167542311908280870234805472890179394919319685737108561217706768509789179025095362424289624183034122102064262957536401828315855312950321488906393913015767439222446039552629205112879528095381019600147019987676826368063479382175782209766835979791945410400236944727042863840345200354499034127011091488092530295806782995564564653277485662220886432994361617781240003179393760428017865475982013377756422997199135492786588468893528239946638132984706677589025387040974502470009562526313268696804621636958130608687906989216361827861883598469808708890759691512546780346252412952909647587955248280932405081091641177383109053103042042275683465200982892351237169445797536495508871963462899366468853235889133465884822352152182528094564547715286474152011584895740710521666943257606808482562286455530134438324843947603871482423496801851255949060730755074187247456611777935577983887210231398415832124746271608704155365400586454256928351469259579831714948459563037045592719886481914306756941496597805022291994338270280444411581219309462177036253343894566134706471679283285732755539094424847724618723246372945549320165727223795723583136261715209928254507856342309277076958534260993955221669015255677767815014604365407930200216009681127377179076812150274512120659004103827099934148717695849588217025971511984271522123386336619387723326262088667972068046972937383356521180425644426495355915699191601729017475004628470321924423259613268148100275716379595186693193295764445505167066858209866987861060607447591710586856709851843657312124278308388752018739535182682085744929778633037420972786546492745728,1528823808)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23; q = G.24; r = G.25; s = G.26; t = G.27;
 

Group information

Description:$C_2^{12}.(C_6^4.D_6\wr C_2)$
Order: \(1528823808\)\(\medspace = 2^{21} \cdot 3^{6} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(36691771392\)\(\medspace = 2^{24} \cdot 3^{7} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 21, $C_3$ x 6
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 24
Elements 1 1211391 1896128 55084032 396267840 111476736 835485696 127401984 1528823808
Conjugacy classes   1 528 27 881 2079 20 1212 4 4752
Divisions 1 528 21 881 1464 20 815 2 3732
Autjugacy classes 1 200 11 157 560 6 142 1 1078

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t \mid e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([27, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 27176308920, 2516958901, 136, 86601988838, 26343183584, 99496526691, 72254056782, 14928588849, 15887515044, 89486440204, 95911000051, 9814699318, 244250455, 382, 132738435077, 44391240032, 52167696251, 17705714270, 1254673292, 130705819782, 101738851233, 23703425988, 22852585815, 10918527468, 635336115, 546, 72753002503, 52032761890, 17172839869, 5762493016, 16082888371, 2580381502, 140331450248, 148220956547, 4839341174, 22802020757, 11481369578, 7124937776, 2416759100, 490829336, 710, 410065856649, 170664122916, 101934573183, 47569330170, 22352384277, 8517412584, 3963897171, 1807265718, 63167366602, 59440905253, 93837183328, 50716646731, 27996253678, 7553930221, 3653820100, 2276663797, 809254, 402094, 874, 10352530955, 35843969702, 26289909569, 29901083996, 6625385399, 1476872498, 3832067405, 726865688, 245536304844, 53780444679, 16379693058, 3598227453, 30555819336, 7271285259, 726157398, 73741791, 376445622, 407501778, 145986096, 21874278, 1038, 308362517581, 213636026056, 51818937475, 37590086110, 26069879929, 4343347156, 158909863, 391150822, 592302037, 402211912, 149420659, 62095882, 210785639054, 194882701721, 49746610148, 31492895, 9340764602, 9940702469, 984699356, 104358983, 198492350, 69328157, 23284544, 5426528, 2556725, 1202, 634656743439, 158745436458, 21480920133, 26873952, 5334460539, 3187911318, 8201265, 188690028, 147993063, 32006274, 4883613, 658707, 2864526, 23304392080, 11994837739, 84289849414, 17667460897, 8737362556, 21072462487, 4029608914, 2013019981, 673386280, 337139431, 112380010, 56115817, 18639412, 9328165, 209333901329, 204889637420, 30113415431, 3083775074, 1541887613, 1255040747, 498872402, 199034729, 100147364, 1225061, 595232, 198683, 102482, 5318802, 2659437, 55193021640, 23659281054, 17951049, 17951076, 997479, 9576, 41922, 635499665299, 396860212846, 9069926473, 4534963300, 2267481727, 327525301, 684618688, 257541355, 21695302, 6920983, 3538450, 1179757, 577144, 1911542996, 3021023, 81954343370, 25620652640, 284380139, 72748550, 45192377, 6664862, 3495926, 1163882, 548147, 436546661781, 127926358608, 40796053131, 16517343846, 8258672001, 157493343, 78714714, 61586157, 38491464, 2566425, 941268, 314031, 214266, 269111154838, 352551258481, 95795638924, 347680615, 28698129058, 1006824973, 311531044, 170453533, 93358894, 19315849, 56236, 743710, 246316, 11605, 884023331351, 377554255538, 14705038157, 21011996264, 40346056067, 4300656926, 4880544377, 2001682580, 579887663, 231157418, 120442757, 49304048, 20633963, 11810174, 1695569, 327020, 2771560824, 103800949251, 44857994478, 17384025705, 8692012932, 409843986, 21214113, 8748240, 33242667, 6755748, 267675, 89502, 563379, 406924487449, 369189954484, 152310098383, 74020677226, 51863602885, 17514405952, 2579336323, 2529032434, 444433633, 456715852, 140108263, 36126646, 24931177, 5996158, 2165371, 1226122, 1046262829562, 72129219605, 123069453488, 55643998571, 8111915558, 24429280049, 258398612, 3842239913, 1267427978, 52435781, 17163872, 80739989, 36728828, 4927688, 5730344, 3049109]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24, G.25, G.26, G.27]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t"]);
 
Copy content gap:G := PcGroupCode(434023896113571518590184154573636663684316516576614437232207084700134746484747659422045794112230575108674938024269057002905136828023849831251016347746055079190346536067875532539206276663665063242645997278839932816416565532663454022093152059172504555725116166148492738069811681614682395753467414594981193506952197757248136693820646992070064052224676280148947570589764047763948307333792784978911185755035020255710509130232083741943118486001138314298184131349646034830408251045480181214201000801954453967909301803301310506860898953874643716583154140599300687949818890139400319895915907512277277181900574763376246384719261937114655665564793542364493682016862564614680423369340189770505621024111971155340897804193773515842722768601221513090784779557181942097316005482655107503606881108648981594134831161567288007150217398635316325707631348190458743675424545273576336459591824459864580178176522604107905238103940873977434862867454388567713013305899578189678748963882639665388998325932843218722679505956702167542311908280870234805472890179394919319685737108561217706768509789179025095362424289624183034122102064262957536401828315855312950321488906393913015767439222446039552629205112879528095381019600147019987676826368063479382175782209766835979791945410400236944727042863840345200354499034127011091488092530295806782995564564653277485662220886432994361617781240003179393760428017865475982013377756422997199135492786588468893528239946638132984706677589025387040974502470009562526313268696804621636958130608687906989216361827861883598469808708890759691512546780346252412952909647587955248280932405081091641177383109053103042042275683465200982892351237169445797536495508871963462899366468853235889133465884822352152182528094564547715286474152011584895740710521666943257606808482562286455530134438324843947603871482423496801851255949060730755074187247456611777935577983887210231398415832124746271608704155365400586454256928351469259579831714948459563037045592719886481914306756941496597805022291994338270280444411581219309462177036253343894566134706471679283285732755539094424847724618723246372945549320165727223795723583136261715209928254507856342309277076958534260993955221669015255677767815014604365407930200216009681127377179076812150274512120659004103827099934148717695849588217025971511984271522123386336619387723326262088667972068046972937383356521180425644426495355915699191601729017475004628470321924423259613268148100275716379595186693193295764445505167066858209866987861060607447591710586856709851843657312124278308388752018739535182682085744929778633037420972786546492745728,1528823808); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21; o := G.22; p := G.23; q := G.24; r := G.25; s := G.26; t := G.27;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(434023896113571518590184154573636663684316516576614437232207084700134746484747659422045794112230575108674938024269057002905136828023849831251016347746055079190346536067875532539206276663665063242645997278839932816416565532663454022093152059172504555725116166148492738069811681614682395753467414594981193506952197757248136693820646992070064052224676280148947570589764047763948307333792784978911185755035020255710509130232083741943118486001138314298184131349646034830408251045480181214201000801954453967909301803301310506860898953874643716583154140599300687949818890139400319895915907512277277181900574763376246384719261937114655665564793542364493682016862564614680423369340189770505621024111971155340897804193773515842722768601221513090784779557181942097316005482655107503606881108648981594134831161567288007150217398635316325707631348190458743675424545273576336459591824459864580178176522604107905238103940873977434862867454388567713013305899578189678748963882639665388998325932843218722679505956702167542311908280870234805472890179394919319685737108561217706768509789179025095362424289624183034122102064262957536401828315855312950321488906393913015767439222446039552629205112879528095381019600147019987676826368063479382175782209766835979791945410400236944727042863840345200354499034127011091488092530295806782995564564653277485662220886432994361617781240003179393760428017865475982013377756422997199135492786588468893528239946638132984706677589025387040974502470009562526313268696804621636958130608687906989216361827861883598469808708890759691512546780346252412952909647587955248280932405081091641177383109053103042042275683465200982892351237169445797536495508871963462899366468853235889133465884822352152182528094564547715286474152011584895740710521666943257606808482562286455530134438324843947603871482423496801851255949060730755074187247456611777935577983887210231398415832124746271608704155365400586454256928351469259579831714948459563037045592719886481914306756941496597805022291994338270280444411581219309462177036253343894566134706471679283285732755539094424847724618723246372945549320165727223795723583136261715209928254507856342309277076958534260993955221669015255677767815014604365407930200216009681127377179076812150274512120659004103827099934148717695849588217025971511984271522123386336619387723326262088667972068046972937383356521180425644426495355915699191601729017475004628470321924423259613268148100275716379595186693193295764445505167066858209866987861060607447591710586856709851843657312124278308388752018739535182682085744929778633037420972786546492745728,1528823808)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23; q = G.24; r = G.25; s = G.26; t = G.27;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(434023896113571518590184154573636663684316516576614437232207084700134746484747659422045794112230575108674938024269057002905136828023849831251016347746055079190346536067875532539206276663665063242645997278839932816416565532663454022093152059172504555725116166148492738069811681614682395753467414594981193506952197757248136693820646992070064052224676280148947570589764047763948307333792784978911185755035020255710509130232083741943118486001138314298184131349646034830408251045480181214201000801954453967909301803301310506860898953874643716583154140599300687949818890139400319895915907512277277181900574763376246384719261937114655665564793542364493682016862564614680423369340189770505621024111971155340897804193773515842722768601221513090784779557181942097316005482655107503606881108648981594134831161567288007150217398635316325707631348190458743675424545273576336459591824459864580178176522604107905238103940873977434862867454388567713013305899578189678748963882639665388998325932843218722679505956702167542311908280870234805472890179394919319685737108561217706768509789179025095362424289624183034122102064262957536401828315855312950321488906393913015767439222446039552629205112879528095381019600147019987676826368063479382175782209766835979791945410400236944727042863840345200354499034127011091488092530295806782995564564653277485662220886432994361617781240003179393760428017865475982013377756422997199135492786588468893528239946638132984706677589025387040974502470009562526313268696804621636958130608687906989216361827861883598469808708890759691512546780346252412952909647587955248280932405081091641177383109053103042042275683465200982892351237169445797536495508871963462899366468853235889133465884822352152182528094564547715286474152011584895740710521666943257606808482562286455530134438324843947603871482423496801851255949060730755074187247456611777935577983887210231398415832124746271608704155365400586454256928351469259579831714948459563037045592719886481914306756941496597805022291994338270280444411581219309462177036253343894566134706471679283285732755539094424847724618723246372945549320165727223795723583136261715209928254507856342309277076958534260993955221669015255677767815014604365407930200216009681127377179076812150274512120659004103827099934148717695849588217025971511984271522123386336619387723326262088667972068046972937383356521180425644426495355915699191601729017475004628470321924423259613268148100275716379595186693193295764445505167066858209866987861060607447591710586856709851843657312124278308388752018739535182682085744929778633037420972786546492745728,1528823808)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22; p = G.23; q = G.24; r = G.25; s = G.26; t = G.27;
 
Permutation group:Degree $36$ $\langle(1,32,17,21,12,26,2,31,18,22,11,25)(3,35,13,20,9,27,4,36,14,19,10,28)(5,34,15,23,8,29) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,32,17,21,12,26,2,31,18,22,11,25)(3,35,13,20,9,27,4,36,14,19,10,28)(5,34,15,23,8,29)(6,33,16,24,7,30), (1,25,10,35,6,30,11,31,3,27,8,34,2,26,9,36,5,29,12,32,4,28,7,33)(13,19,15,24,17,22)(14,20,16,23,18,21), (1,36,9,22,14,27)(2,35,10,21,13,28)(3,33,8,19,15,29)(4,34,7,20,16,30)(5,32,12,23,18,26,6,31,11,24,17,25) >;
 
Copy content gap:G := Group( (1,32,17,21,12,26,2,31,18,22,11,25)(3,35,13,20,9,27,4,36,14,19,10,28)(5,34,15,23,8,29)(6,33,16,24,7,30), (1,25,10,35,6,30,11,31,3,27,8,34,2,26,9,36,5,29,12,32,4,28,7,33)(13,19,15,24,17,22)(14,20,16,23,18,21), (1,36,9,22,14,27)(2,35,10,21,13,28)(3,33,8,19,15,29)(4,34,7,20,16,30)(5,32,12,23,18,26,6,31,11,24,17,25) );
 
Copy content sage:G = PermutationGroup(['(1,32,17,21,12,26,2,31,18,22,11,25)(3,35,13,20,9,27,4,36,14,19,10,28)(5,34,15,23,8,29)(6,33,16,24,7,30)', '(1,25,10,35,6,30,11,31,3,27,8,34,2,26,9,36,5,29,12,32,4,28,7,33)(13,19,15,24,17,22)(14,20,16,23,18,21)', '(1,36,9,22,14,27)(2,35,10,21,13,28)(3,33,8,19,15,29)(4,34,7,20,16,30)(5,32,12,23,18,26,6,31,11,24,17,25)'])
 
Transitive group: 36T95202 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $C_2^{18}$ . $(\He_3^2:D_4)$ $C_2^{16}$ . $(C_3^4:D_6\wr C_2)$ $C_2^{12}$ . $(C_6^4.D_6\wr C_2)$ $C_2^{17}$ . $(C_2\times \He_3^2:D_4)$ all 39

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 71 normal subgroups (48 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $4752 \times 4752$ character table is not available for this group.

Rational character table

The $3732 \times 3732$ rational character table is not available for this group.