Group information
Description: | $C_{70}\times C_{210}$ | |
Order: | \(14700\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7^{2} \) |
|
Exponent: | \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \) |
|
Automorphism group: | $C_2\times S_3\times \GL(2,5)\times C_6.\SO(3,7)$, of order \(11612160\)\(\medspace = 2^{12} \cdot 3^{4} \cdot 5 \cdot 7 \) |
|
Composition factors: | $C_2$ x 2, $C_3$, $C_5$ x 2, $C_7$ x 2 |
|
Nilpotency class: | $1$ |
|
Derived length: | $1$ |
|
This group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and metacyclic.
Group statistics
Order | 1 | 2 | 3 | 5 | 6 | 7 | 10 | 14 | 15 | 21 | 30 | 35 | 42 | 70 | 105 | 210 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elements | 1 | 3 | 2 | 24 | 6 | 48 | 72 | 144 | 48 | 96 | 144 | 1152 | 288 | 3456 | 2304 | 6912 | 14700 |
Conjugacy classes | 1 | 3 | 2 | 24 | 6 | 48 | 72 | 144 | 48 | 96 | 144 | 1152 | 288 | 3456 | 2304 | 6912 | 14700 |
Divisions | 1 | 3 | 1 | 6 | 3 | 8 | 18 | 24 | 6 | 8 | 18 | 48 | 24 | 144 | 48 | 144 | 504 |
Autjugacy classes | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 16 |
Minimal presentations
Permutation degree: | $31$ |
Transitive degree: | $14700$ |
Rank: | $2$ |
Inequivalent generating pairs: | $4$ |
Minimal degrees of faithful linear representations
Over $\mathbb{C}$ | Over $\mathbb{R}$ | Over $\mathbb{Q}$ | |
---|---|---|---|
Irreducible | none | not computed | none |
Arbitrary | 2 | not computed | not computed |
Constructions
Presentation: | Abelian group
$\langle a, b \mid a^{70}=b^{210}=1 \rangle$
| |||||||||
| ||||||||||
Permutation group: | Degree $31$
$\langle(3,4)(5,6,7)(13,14,15,16,17)(25,26,27,28,29,30,31), (1,2)(8,9,10,11,12)(18,19,20,21,22,23,24)\rangle$
| |||||||||
| ||||||||||
Matrix group: | $\left\langle \left(\begin{array}{rr} 1 & 0 \\ 0 & 2 \end{array}\right), \left(\begin{array}{rr} 8 & 0 \\ 0 & 132 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{211})$ | |||||||||
| ||||||||||
Direct product: | $C_2$ ${}^2$ $\, \times\, $ $C_3$ $\, \times\, $ $C_5$ ${}^2$ $\, \times\, $ $C_7$ ${}^2$ | |||||||||
Semidirect product: | not isomorphic to a non-trivial semidirect product | |||||||||
Trans. wreath product: | not isomorphic to a non-trivial transitive wreath product |
Elements of the group are displayed as words in the presentation generators from the presentation above.
Homology
Primary decomposition: | $C_{2}^{2} \times C_{3} \times C_{5}^{2} \times C_{7}^{2}$ |
|
Schur multiplier: | $C_{70}$ |
|
Commutator length: | $0$ |
|
Subgroups
There are 800 subgroups, all normal (16 characteristic).
Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.
Special subgroups
Center: | $Z \simeq$ $C_{70}\times C_{210}$ | $G/Z \simeq$ $C_1$ |
|
Commutator: | $G' \simeq$ $C_1$ | $G/G' \simeq$ $C_{70}\times C_{210}$ |
|
Frattini: | $\Phi \simeq$ $C_1$ | $G/\Phi \simeq$ $C_{70}\times C_{210}$ |
|
Fitting: | $\operatorname{Fit} \simeq$ $C_{70}\times C_{210}$ | $G/\operatorname{Fit} \simeq$ $C_1$ |
|
Radical: | $R \simeq$ $C_{70}\times C_{210}$ | $G/R \simeq$ $C_1$ |
|
Socle: | $\operatorname{soc} \simeq$ $C_{70}\times C_{210}$ | $G/\operatorname{soc} \simeq$ $C_1$ |
|
2-Sylow subgroup: | $P_{ 2 } \simeq$ $C_2^2$ | ||
3-Sylow subgroup: | $P_{ 3 } \simeq$ $C_3$ | ||
5-Sylow subgroup: | $P_{ 5 } \simeq$ $C_5^2$ | ||
7-Sylow subgroup: | $P_{ 7 } \simeq$ $C_7^2$ |
Subgroup diagram and profile
For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
To see subgroups sorted vertically by order instead, check this box.
Subgroup information
Click on a subgroup in the diagram to see information about it.
|
Series
Derived series | $C_{70}\times C_{210}$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chief series | $C_{70}\times C_{210}$ | $\rhd$ | $C_{35}\times C_{210}$ | $\rhd$ | $C_7\times C_{210}$ | $\rhd$ | $C_{210}$ | $\rhd$ | $C_{105}$ | $\rhd$ | $C_{35}$ | $\rhd$ | $C_7$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lower central series | $C_{70}\times C_{210}$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Upper central series | $C_1$ | $\lhd$ | $C_{70}\times C_{210}$ |
|
Supergroups
This group is a maximal subgroup of 7 larger groups in the database.
This group is a maximal quotient of 5 larger groups in the database.
Character theory
Complex character table
The $14700 \times 14700$ character table is not available for this group.
Rational character table
The $504 \times 504$ rational character table is not available for this group.