Properties

Label 14641000.t
Order \( 2^{3} \cdot 5^{3} \cdot 11^{4} \)
Exponent \( 2^{2} \cdot 5 \cdot 11 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 5 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{4} \cdot 5^{3} \cdot 11^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $44$
Trans deg. $44$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 44 | (1,42,4,40,9,44,10,36,8,41)(2,34)(3,37,11,39,6,35,5,43,7,38)(12,30,15,29,20,31,21,27,19,24)(13,26)(14,33,22,23,17,32,16,25,18,28), (1,20,23,41)(2,13,26,38,5,14,24,40,6,18,27,37,10,12,28,36,4,21,32,43)(3,17,29,35,9,19,25,39,11,16,31,44,8,15,33,42,7,22,30,34) >;
 
Copy content gap:G := Group( (1,42,4,40,9,44,10,36,8,41)(2,34)(3,37,11,39,6,35,5,43,7,38)(12,30,15,29,20,31,21,27,19,24)(13,26)(14,33,22,23,17,32,16,25,18,28), (1,20,23,41)(2,13,26,38,5,14,24,40,6,18,27,37,10,12,28,36,4,21,32,43)(3,17,29,35,9,19,25,39,11,16,31,44,8,15,33,42,7,22,30,34) );
 
Copy content sage:G = PermutationGroup(['(1,42,4,40,9,44,10,36,8,41)(2,34)(3,37,11,39,6,35,5,43,7,38)(12,30,15,29,20,31,21,27,19,24)(13,26)(14,33,22,23,17,32,16,25,18,28)', '(1,20,23,41)(2,13,26,38,5,14,24,40,6,18,27,37,10,12,28,36,4,21,32,43)(3,17,29,35,9,19,25,39,11,16,31,44,8,15,33,42,7,22,30,34)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(44942408131021392938460506257944154504732726070728433650493032288080417093765758608459106064004685501396032985456110561858639640390842976695696562719212338955098298905041089896189357362226271489931402961436845522483299020555988102465844277015552058221930245626181704450300393999,14641000)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.7; f = G.9; g = G.10;
 

Group information

Description:$C_{11}^4:(D_5^2:C_{10})$
Order: \(14641000\)\(\medspace = 2^{3} \cdot 5^{3} \cdot 11^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_{11}^4.C_5^2.C_{20}.C_2^2$, of order \(29282000\)\(\medspace = 2^{4} \cdot 5^{3} \cdot 11^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 3, $C_5$ x 3, $C_{11}$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 5 10 11 20 22 44 55 110
Elements 1 17545 66550 828124 6894580 14640 2928200 641300 665500 987360 1597200 14641000
Conjugacy classes   1 3 1 29 32 24 4 13 2 42 12 163
Divisions 1 3 1 9 9 22 1 11 1 8 2 68
Autjugacy classes 1 3 1 29 32 22 4 11 1 26 6 136

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 8 16 32 40 100 160 200 250 320 400 500 800 1000 2000
Irr. complex chars.   20 5 40 5 0 0 25 32 0 7 8 0 0 10 0 11 0 163
Irr. rational chars. 4 1 4 6 8 1 1 4 2 3 4 2 3 12 3 9 1 68

Minimal presentations

Permutation degree:$44$
Transitive degree:$44$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 40 40 40
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g \mid a^{10}=c^{5}=d^{11}=e^{55}=f^{11}=g^{11}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([10, 2, 5, 2, 2, 5, 11, 5, 11, 11, 11, 20, 307806902, 217044762, 82, 467138403, 130938013, 12586433, 1732004, 1651014, 36058024, 197434, 4740005, 1656015, 67518025, 149745, 1002386006, 222607016, 70381666, 25409336, 138646, 416, 7040007, 3960017, 29040027, 444837, 66047, 751410008, 16335018, 808228, 5445038, 99068, 1185800009, 199650019, 660029, 9075039, 302569]); a,b,c,d,e,f,g := Explode([G.1, G.3, G.5, G.6, G.7, G.9, G.10]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "e", "e5", "f", "g"]);
 
Copy content gap:G := PcGroupCode(44942408131021392938460506257944154504732726070728433650493032288080417093765758608459106064004685501396032985456110561858639640390842976695696562719212338955098298905041089896189357362226271489931402961436845522483299020555988102465844277015552058221930245626181704450300393999,14641000); a := G.1; b := G.3; c := G.5; d := G.6; e := G.7; f := G.9; g := G.10;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(44942408131021392938460506257944154504732726070728433650493032288080417093765758608459106064004685501396032985456110561858639640390842976695696562719212338955098298905041089896189357362226271489931402961436845522483299020555988102465844277015552058221930245626181704450300393999,14641000)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.7; f = G.9; g = G.10;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(44942408131021392938460506257944154504732726070728433650493032288080417093765758608459106064004685501396032985456110561858639640390842976695696562719212338955098298905041089896189357362226271489931402961436845522483299020555988102465844277015552058221930245626181704450300393999,14641000)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.7; f = G.9; g = G.10;
 
Permutation group:Degree $44$ $\langle(1,42,4,40,9,44,10,36,8,41)(2,34)(3,37,11,39,6,35,5,43,7,38)(12,30,15,29,20,31,21,27,19,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 44 | (1,42,4,40,9,44,10,36,8,41)(2,34)(3,37,11,39,6,35,5,43,7,38)(12,30,15,29,20,31,21,27,19,24)(13,26)(14,33,22,23,17,32,16,25,18,28), (1,20,23,41)(2,13,26,38,5,14,24,40,6,18,27,37,10,12,28,36,4,21,32,43)(3,17,29,35,9,19,25,39,11,16,31,44,8,15,33,42,7,22,30,34) >;
 
Copy content gap:G := Group( (1,42,4,40,9,44,10,36,8,41)(2,34)(3,37,11,39,6,35,5,43,7,38)(12,30,15,29,20,31,21,27,19,24)(13,26)(14,33,22,23,17,32,16,25,18,28), (1,20,23,41)(2,13,26,38,5,14,24,40,6,18,27,37,10,12,28,36,4,21,32,43)(3,17,29,35,9,19,25,39,11,16,31,44,8,15,33,42,7,22,30,34) );
 
Copy content sage:G = PermutationGroup(['(1,42,4,40,9,44,10,36,8,41)(2,34)(3,37,11,39,6,35,5,43,7,38)(12,30,15,29,20,31,21,27,19,24)(13,26)(14,33,22,23,17,32,16,25,18,28)', '(1,20,23,41)(2,13,26,38,5,14,24,40,6,18,27,37,10,12,28,36,4,21,32,43)(3,17,29,35,9,19,25,39,11,16,31,44,8,15,33,42,7,22,30,34)'])
 
Transitive group: 44T608 more information
Direct product: not computed
Semidirect product: $C_{11}^4$ $\,\rtimes\,$ $(D_5^2:C_{10})$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_{11}^4.D_5^2)$ . $C_{10}$ $(C_{11}^4:D_5^2)$ . $C_{10}$ $(C_{11}^4:D_5\wr C_2)$ . $C_5$ $(C_{11}^4:(C_5:F_5))$ . $C_{10}$ all 11

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2} \times C_{10} \simeq C_{2}^{2} \times C_{5}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 15 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $D_4$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^3$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $163 \times 163$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $68 \times 68$ rational character table.