Properties

Label 1442784.a
Order \( 2^{5} \cdot 3 \cdot 7 \cdot 19 \cdot 113 \)
Exponent \( 2^{4} \cdot 3 \cdot 7 \cdot 19 \cdot 113 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{5} \cdot 3 \cdot 7 \cdot 19 \cdot 113 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $1824$
Trans deg. not computed
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := SL(2, 113);
 
Copy content gap:G := SL(2, 113);
 
Copy content sage:G = SL(2, 113)
 
Copy content comment:Define the group as a permutation group
 

Group information

Description:$\SL(2,113)$
Order: \(1442784\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 19 \cdot 113 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(721392\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \cdot 19 \cdot 113 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$\PGL(2,113)$, of order \(1442784\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 19 \cdot 113 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $\PSL(2,113)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and quasisimple (hence nonsolvable and perfect). Whether it is almost simple has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 8 14 16 19 28 38 56 57 112 113 114 226
Elements 1 1 12656 12882 12656 38646 25764 38646 51528 113904 77292 113904 154584 227808 309168 12768 227808 12768 1442784
Conjugacy classes   1 1 1 1 1 3 2 3 4 9 6 9 12 18 24 2 18 2 117
Divisions 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 18
Autjugacy classes 1 1 1 1 1 3 2 3 4 9 6 9 12 18 24 1 18 1 115

Minimal presentations

Permutation degree:$1824$
Transitive degree:not computed
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 56 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\SL(2,113)$, $\SU(2,113)$
Permutation group:Degree $1824$ $\langle(1,2,6,24,149,810,1764,1203,1352,1761,1821,1631,563,95,16,4)(3,9,39,248,1152,1734,1075,462,624,1037,1658,1753,790,1559,922,172,748,1225,540,1547,1392,1428,862,260,801,580,1053,1708,716,1241,345,52,10,48,316,1332,1767,1736,760,138,22,134,749,1015,1129,1544,686,619,130,739,1192,1469,1524,450,1183,735,745,608,1132,1651,1755,1704,1403,970,327,93,556,1625,1785,870,160,868,752,456,570,1646,1792,1606,1557,584,146,798,1545,470,362,956,964,232,132,346,847,1615,1266,290,832,435,1209,1201,1165,1822,1396,452,864,1093,332,577,1641,643,1130,445,69,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 1824 | (1,2,6,24,149,810,1764,1203,1352,1761,1821,1631,563,95,16,4)(3,9,39,248,1152,1734,1075,462,624,1037,1658,1753,790,1559,922,172,748,1225,540,1547,1392,1428,862,260,801,580,1053,1708,716,1241,345,52,10,48,316,1332,1767,1736,760,138,22,134,749,1015,1129,1544,686,619,130,739,1192,1469,1524,450,1183,735,745,608,1132,1651,1755,1704,1403,970,327,93,556,1625,1785,870,160,868,752,456,570,1646,1792,1606,1557,584,146,798,1545,470,362,956,964,232,132,346,847,1615,1266,290,832,435,1209,1201,1165,1822,1396,452,864,1093,332,577,1641,643,1130,445,69,12)(5,17,96,564,1632,1809,1556,925,330,265,1202,1766,812,151,26,8)(7,27,164,890,1790,1467,1474,413,1042,634,661,1680,1140,1536,1279,830,621,266,41,261,1187,1323,701,897,666,112,609,1581,1098,786,933,175,28,171,314,541,1489,1528,453,238,37,235,1120,1303,1788,1808,1080,444,231,519,549,1620,1542,991,1555,1111,802,147,800,623,1689,1594,1258,527,85,14,81,506,1296,1663,820,1181,257,136,102,606,1570,1648,688,117,245,534,268,1001,942,1509,1153,518,233,121,705,1591,1633,910,1339,981,405,322,280,1237,1418,993,1357,1497,650,109,589,1055,1696,807,188,30)(11,56,368,1417,475,1553,969,223,639,502,1135,1706,1731,1121,958,1305,304,46,300,1295,1299,516,82,512,694,1375,1811,1013,576,778,924,180,334,548,1334,1297,1510,965,183,33,205,1038,1479,1634,1578,733,433,67,83,295,1284,1709,1367,903,249,237,720,1576,1824,1424,766,139,763,1023,520,1248,1412,1395,353,1346,954,691,140,770,1551,1573,1257,287,855,928,326,299,1293,495,1438,1104,228,226,133,616,1337,1710,784,757,1373,1034,312,47,309,1316,1294,1354,1018,759,653,1659,1450,1446,1439,1270,401,61)(13,73,460,466,1380,374,1125,738,667,660,1530,656,683,960,182,29,79,494,1161,1003,1443,379,869,684,141,772,1685,1715,1269,1700,1492,918,170,916,1586,1463,1028,198,776,1087,669,1653,644,108,640,1702,835,356,54,283,1163,1413,402,838,158,857,805,1371,568,671,1109,979,186,199,914,1601,1230,1723,1422,891,881,734,712,1656,1342,638,239,1126,689,1031,395,1228,1180,938,1386,451,1084,240,633,421,1484,1712,907,1245,439,68,436,1285,1022,1608,1786,873,730,234,746,535,1486,1137,1123,1327,478,76)(15,90,472,1415,1692,1437,681,1320,422,537,827,1776,1246,1348,324,49,272,1222,1529,1044,1783,860,211,680,267,1211,641,1703,1243,1122,441,333,91,546,1587,1301,819,1142,762,602,101,599,243,488,768,1252,529,499,595,1419,1716,1802,1102,1124,1070,1672,1205,1208,773,1372,988,1004,828,419,1198,561,1148,1800,1097,224,35,220,1088,383,1448,1032,1255,957,1240,281,43,277,949,179,946,397,407,131,597,1012,194,1008,1743,929,174,339,1206,1456,1714,1816,1514,874,216,704,1216,1447,1499,1408,769,620,104,75)(18,103,610,1682,1307,1520,1100,1464,474,463,1233,1388,1803,976,274,256,137,754,1483,1812,1813,1039,603,1351,496,275,1162,1157,1763,1433,1105,394,1065,604,1675,1737,1756,1605,648,203,337,1174,254,983,369,1421,727,127,125,598,1649,1011,1261,1679,1007,1020,526,1546,545,1619,1398,1173,951,491,649,1655,1820,1599,1282,1741,1024,197,554,92,550,1621,947,449,1478,418,122,710,1330,780,911,1733,750,399,1452,412,544,1617,1394,1691,1229,557,721,699,1725,1575,486,987,996,329,59,386,902,936,1797,1191,408,62)(19,111,658,1609,1823,1740,953,181,89,539,1218,1819,1382,1440,871,206,113,668,1056,1356,811,1560,1503,921,799,893,543,1616,1807,1026,1207,1107,771,605,567,1639,1744,1081,1720,943,415,479,980,1804,1384,1523,889,1086,1136,1664,1344,1360,336,1358,848,826,1353,510,833,843,1768,1513,513,1133,629,593,473,1432,1309,1256,834,528,1312,306,1311,1724,1400,507,1227,411,672,614,1686,1697,1752,817,190,184,533,273,1226,1156,301,824,163,885,679,575,1635,1600,791,1754,962,430,915,1238,1333,1399,354,1029,682,116)(20,119,695,509,1577,523,934,398,1461,1199,542,1436,377,57,373,1073,1066,596,1569,485,77,481,1366,340,51,335,1355,1588,899,1719,1108,229,115,677,1534,1283,913,1274,446,1025,572,311,94,454,1324,1442,1471,1092,804,1490,1552,908,168,905,974,952,363,547,999,1543,1423,628,1050,208,110,423,1488,1698,1596,1727,978,755,360,508,559,937,1387,865,159,793,706,1644,569,788,144,765,856,926,900,372,250,1158,1369,1472,723,758,670,1507,1611,1593,504,1517,443,477,169,912,1166,1630,803,1434,715,123)(21,126,722,1687,1654,1770,1236,622,904,1179,255,1176,1435,1579,1064,410,118,690,1482,1815,1750,1242,892,525,385,279,1168,1583,1411,1726,1453,714,709,782,1747,1139,1729,841,1350,325,492,1214,1217,1799,1370,1773,1470,1134,665,574,1650,1014,1500,846,156,72,50,328,469,74,465,1538,1186,259,626,587,1666,1571,1263,289,849,344,741,1304,1806,1155,1368,1194,884,632,625,726,1647,1699,1127,1271,1224,531,498,600,1278,1381,349,1378,724,796,145,792,1637,1795,1793,1281,530,86,87,302,1169,1154,1707,1049,736,129)(23,143,779,615,1082,218,887,428,500,308,1189,1604,1416,1030,877,222,794,1638,566,1574,744,1197,963,400,536,553,1585,1624,1364,1511,1059,210,124,573,1636,1150,842,155,25,152,740,298,1171,1213,366,458,1531,1048,743,785,1341,1475,1397,1521,447,348,166,898,742,471,1091,1493,1067,213,148,806,1676,646,483,286,153,490,78,42,270,351,53,70,162,879,1701,751,1614,1668,1674,767,876,365,55,361,1175,1468,1300,1441,1147,246,1146,697,1678,1519,717,737,201,32,58,307,251,674,341,440,258,40)(31,63,269,998,1322,310,378,1114,1068,753,651,1061,1077,1565,837,154,196,1021,1235,1231,1506,950,1758,1078,241,1131,1652,1671,1794,1718,764,1512,829,1250,284,1190,1782,850,713,1495,1069,630,607,209,1052,1310,1262,940,177,338,558,1535,961,1264,818,635,1149,594,100,591,1669,1592,840,851,1349,1210,276,1170,355,1393,1526,1110,659,654,585,1051,882,1717,1083,1167,252,392,511,1602,1798,992,1784,883,1047,678,1212,1677,1751,789,985,187,982,524,264,1200,1541,1410,1106,878,1118,775,613,1612,1580,487,1005,193)(34,212,1063,1713,1460,1244,282,836,204,331,263,1164,1550,1539,1693,858,214,655,1661,1345,1765,1562,1331,1409,618,296,45,292,1275,1781,1377,1473,777,142,99,586,1598,1626,1239,1251,347,1006,1314,1277,1459,1554,1622,551,728,675,663,1391,927,1325,313,357,1402,384,317,1336,1711,1195,262,1193,732,128,65,420,1481,1280,293,1035,404,505,1223,1319,562,381,1429,968,1071,702,1681,1814,1260,288,44,285,427,389,320,1338,468,1302,823,1427,637,107,578,1451,1141,1306,1313,977,431,1476,1328,1420,939,352,1076,217)(36,227,1101,1670,647,1259,1273,448,1494,532,894,1318,1548,1759,797,967,219,664,1657,1690,1749,787,1728,1033,457,342,1249,1618,1389,1379,376,1096,1094,711,1491,1613,1818,1566,1406,923,1019,521,464,1232,1390,1745,1757,1694,631,106,617,1688,1518,1769,816,191,173,359,1000,192,997,1597,1445,896,685,120,700,1449,1405,909,1365,932,438,1363,1425,1178,1796,1791,1775,1046,1043,692,612,1684,1787,1732,747,424,426,135,294,1177,935,1665,1103,1144,244,627,582,1662,1308,305,1036,202,66,84,522,1335,1505,1466,1112,230)(38,242,343,1041,1735,866,1247,975,403,920,297,1288,1221,1762,1515,517,406,583,98,579,1117,1730,1778,959,393,60,390,388,1455,1738,1430,861,225,105,581,1660,645,815,150,813,1115,323,278,253,945,995,1516,514,1116,731,1487,1533,1572,1359,989,687,825,364,319,1002,434,1504,1196,863,247,693,781,1057,1010,906,814,1017,195,167,901,497,176,189,822,1774,1627,774,698,719,761,1128,1772,944,178,367,1234,1287,1501,1540,1789,888,1584,1090,783,808,1099,1113,853,157,71,64,416,1072,930,986,895,165)(80,501,560,1628,1431,375,966,1062,1315,588,1465,1810,1272,291,1268,476,917,1290,461,1185,1801,1760,1182,1060,707,1343,321,1340,1748,1326,442,459,1215,552,1159,271,350,1383,859,1151,555,97,571,1009,1276,1253,1502,718,1407,703,417,1477,1817,1496,429,1143,708,601,1498,1265,1582,1683,611,955,1347,370,391,1457,1188,1027,1184,729,756,662,1645,1522,1779,1742,880,455,88,371,1089,467,437,1508,1074,215,592,590,1643,1568,484,839,852,480,493,1204,1172,1016,1771,821,1454,387,636,1610,1054,1746,1780,1561,972,503)(114,673,1642,919,1361,854,185,200,358,1291,1805,1219,489,875,161,872,1623,725,1058,642,1705,990,1404,425,538,315,1329,1629,1145,1532,867,409,657,1485,1640,1138,1567,1739,994,931,1286,303,1298,1317,948,1444,1603,1095,652,1374,1537,1607,1595,1722,1267,432,414,1289,1589,1695,1401,1527,1045,207,809,1590,565,1563,482,844,831,941,1362,845,1667,1220,1414,1721,1079,221,795,1376,1558,1777,1564,1254,984,1462,396,1292,1458,1549,1385,1525,515,1085,1040,1673,1426,1480,1119,971,973,236,382,318,1160,696,1321,380,886,676), (1,3,5)(2,7,8)(4,15,17)(6,25,26)(9,40,44)(10,20,53)(11,57,62)(12,65,70)(13,74,77)(14,82,86)(16,94,96)(18,104,108)(19,112,117)(21,127,130)(22,135,139)(23,144,146)(24,150,151)(27,165,168)(28,35,176)(29,179,183)(30,115,189)(31,192,194)(32,198,202)(33,69,209)(34,213,218)(36,228,231)(37,236,239)(38,243,245)(39,249,252)(41,262,267)(42,271,274)(43,102,282)(45,293,297)(46,301,305)(47,310,313)(48,232,319)(49,321,325)(50,329,332)(51,336,341)(52,343,346)(54,355,357)(55,362,366)(56,369,351)(58,381,383)(59,387,388)(60,391,394)(61,397,402)(63,412,413)(64,417,418)(66,424,427)(67,429,434)(68,437,440)(71,454,456)(72,304,458)(73,461,462)(75,473,238)(76,475,479)(78,489,491)(79,495,497)(80,502,504)(81,507,509)(83,379,285)(84,523,525)(85,223,448)(87,531,533)(88,535,537)(89,498,344)(90,136,190)(91,99,453)(92,551,555)(93,557,338)(95,562,564)(97,572,576)(98,580,584)(100,592,595)(101,600,603)(103,611,615)(105,623,483)(106,628,632)(107,635,638)(109,648,651)(110,465,656)(111,659,644)(113,669,671)(114,674,371)(116,616,683)(118,691,444)(119,696,630)(120,701,703)(121,175,679)(122,622,327)(123,713,640)(124,716,717)(125,718,719)(126,723,724)(128,730,733)(129,140,737)(131,742,546)(132,363,744)(133,747,748)(134,457,750)(137,755,757)(138,311,761)(141,773,197)(142,776,778)(143,780,784)(145,793,797)(147,687,803)(148,807,808)(149,811,812)(152,824,827)(153,160,833)(154,470,838)(155,216,843)(156,845,847)(157,850,854)(158,188,792)(159,863,866)(161,873,876)(162,880,882)(163,749,887)(164,891,892)(166,899,801)(167,902,903)(169,913,915)(170,468,919)(171,518,415)(172,699,923)(173,924,650)(174,927,930)(177,255,481)(178,942,945)(180,951,539)(181,275,954)(182,956,961)(184,463,969)(185,971,974)(186,976,980)(187,983,986)(191,918,995)(193,1003,1006)(195,1016,1018)(196,1022,510)(199,950,905)(200,1032,1033)(201,869,990)(203,775,1037)(204,426,932)(205,1039,1041)(206,697,1010)(207,1044,1046)(208,1049,1051)(210,287,626)(211,997,1061)(212,1064,607)(214,1069,591)(215,1072,337)(217,746,1077)(219,1084,767)(220,1089,796)(221,1091,474)(222,286,637)(224,349,1052)(225,1098,1099)(226,1100,593)(227,1102,1103)(229,1106,1109)(230,240,1113)(233,324,1117)(234,1119,621)(235,994,1121)(237,1122,1123)(241,1132,401)(242,1135,1137)(244,1142,1145)(246,1081,1148)(247,1150,614)(248,1153,361)(250,568,673)(251,1163,916)(253,500,991)(254,1173,1175)(256,395,472)(257,356,948)(258,940,1185)(259,624,496)(260,901,798)(261,1188,1191)(263,1197,735)(264,384,849)(265,1203,1205)(266,1207,1208)(268,450,1213)(269,1215,1216)(270,277,680)(272,598,1224)(273,928,727)(276,519,1229)(278,295,353)(279,443,1236)(280,1196,1239)(281,566,1211)(283,561,707)(284,1021,390)(288,1177,1011)(289,1001,1264)(290,1265,1267)(291,1269,879)(292,1276,1271)(294,1282,1283)(296,962,1287)(298,1221,528)(299,1294,1234)(300,1296,1297)(302,1251,392)(303,1303,787)(306,477,1313)(307,1220,1315)(308,1154,909)(309,1317,1320)(312,449,1002)(314,1112,636)(315,1330,1331)(316,736,725)(317,814,820)(318,1337,908)(320,1339,597)(322,515,1346)(323,1333,1035)(326,380,1181)(328,446,1350)(330,1352,745)(331,835,1354)(333,779,1012)(334,376,752)(335,1356,1357)(339,1345,1364)(340,1365,492)(342,988,1273)(345,1055,1372)(347,490,1030)(348,1377,608)(350,1026,1139)(352,1391,1392)(354,1397,706)(358,1405,1288)(359,769,1406)(360,1408,1409)(364,1412,1413)(365,516,904)(367,890,1416)(368,1418,1295)(370,753,422)(372,1424,1426)(373,1075,1192)(374,848,545)(375,1411,1432)(377,655,1437)(378,1439,578)(382,1446,1447)(385,476,599)(386,1453,1088)(389,439,1104)(393,1459,1448)(396,1460,1463)(398,846,1231)(399,774,1465)(400,1027,1386)(403,1468,893)(404,982,998)(405,1095,1443)(406,1009,433)(407,1469,1442)(408,501,675)(409,1323,1172)(410,629,709)(411,663,1472)(414,1475,1343)(416,558,1250)(419,1479,1480)(420,947,1389)(421,1341,1486)(423,1489,1436)(425,1082,649)(428,1493,1402)(430,1291,1498)(431,828,1499)(432,1500,1501)(435,1507,1455)(436,466,1312)(438,1492,1511)(441,643,1517)(442,1518,1311)(445,1519,609)(447,878,1522)(451,836,520)(452,1390,722)(455,1530,577)(459,1533,721)(460,1289,1534)(464,1536,1537)(467,1454,1542)(469,1544,1308)(471,1546,966)(478,1555,1214)(480,1558,1238)(482,1464,794)(484,817,1381)(485,508,1570)(486,1574,1576)(487,1579,1581)(488,1167,1583)(493,754,977)(494,1585,1586)(499,1342,662)(503,1591,1361)(505,1004,1596)(506,1597,1485)(511,1286,788)(512,996,605)(513,1488,540)(514,789,1527)(517,906,1050)(521,1005,1300)(522,1263,1604)(524,547,1607)(526,1070,1608)(527,594,604)(529,1609,1441)(530,894,1008)(532,688,1610)(534,897,1353)(536,1384,1577)(538,1615,1036)(541,1401,1143)(542,570,953)(543,834,1189)(544,895,1281)(548,1422,826)(549,946,1474)(550,1508,1528)(552,1623,1624)(553,1549,756)(554,1073,965)(556,888,1626)(559,567,760)(560,1086,1590)(563,1400,1632)(565,1223,987)(569,1190,955)(571,1462,1648)(573,1651,933)(574,1427,1131)(575,857,766)(579,712,1013)(581,1375,1578)(582,1663,1160)(583,1649,1270)(585,1065,619)(586,1665,1653)(587,862,1667)(588,1210,1198)(589,1243,1258)(590,1362,1668)(596,1187,937)(601,1476,1007)(602,1319,1674)(606,1272,1679)(610,979,682)(612,1195,1685)(613,678,1487)(617,1435,646)(618,1349,1602)(620,1594,1053)(625,729,1456)(627,818,842)(631,1096,777)(633,1598,1695)(634,855,1134)(639,1700,1193)(641,1025,1704)(642,1347,785)(645,676,1707)(647,1170,1240)(652,1709,1419)(653,1126,1473)(654,698,1212)(657,1711,1712)(658,877,922)(660,1552,1458)(661,1560,1543)(664,1428,1219)(665,714,771)(666,825,1714)(667,1715,672)(668,1092,1622)(670,1438,1204)(677,1417,1298)(681,1716,728)(684,1718,1719)(685,861,907)(686,1713,1540)(689,1721,1531)(690,860,1466)(692,1692,1445)(693,1688,1629)(694,1722,830)(695,1159,1047)(700,1301,1470)(702,889,1660)(704,1161,1290)(705,816,1407)(708,1248,1324)(710,958,1133)(711,1553,1209)(715,1045,1444)(720,1727,1020)(726,1471,1186)(731,1054,1351)(732,1094,967)(734,1703,1373)(738,1717,1434)(739,1060,1230)(740,1393,1728)(741,1305,1497)(743,1562,1222)(751,1138,917)(758,1734,949)(759,972,1735)(762,939,1572)(763,1107,1655)(764,1738,984)(765,1031,992)(768,1742,1582)(770,1744,1745)(772,1612,885)(781,1681,1693)(782,1478,1206)(783,1659,1731)(786,1650,1526)(790,1261,1737)(791,1423,1701)(795,1332,1757)(799,914,938)(800,960,884)(802,925,1761)(804,1369,1136)(805,1687,1387)(806,1014,1759)(809,1548,1057)(810,1765,1766)(813,1302,1658)(815,864,1336)(819,1523,1600)(821,1410,1772)(822,1605,1482)(823,1120,1247)(829,999,1643)(831,1702,1059)(832,1569,1226)(837,1509,1169)(839,1779,1246)(840,1367,1314)(841,1293,1156)(844,1512,1616)(851,1155,1776)(852,1646,1739)(853,1758,1780)(856,973,1254)(858,1090,1344)(859,1547,1525)(865,1118,1666)(867,1784,1128)(868,1174,1144)(870,935,1637)(871,1676,1686)(872,1524,1321)(874,1370,1669)(875,883,1697)(881,1241,1580)(886,1736,1628)(896,1042,1023)(898,1157,1510)(900,1730,1111)(910,1483,1326)(911,1794,1774)(912,1682,1732)(920,1335,1777)(921,1328,1274)(926,1262,1380)(929,1564,1019)(931,1755,1705)(934,1017,1762)(936,1781,1613)(941,1130,1595)(943,1228,1535)(944,1028,1494)(952,985,1786)(957,1769,1304)(959,1763,1798)(963,1182,1506)(964,1620,1415)(968,1066,1802)(970,1371,1645)(975,1504,1366)(978,1403,1641)(981,1672,1218)(989,1773,1675)(993,1589,1101)(1000,1808,1642)(1015,1242,1618)(1024,1638,1568)(1029,1360,1783)(1034,1183,1200)(1038,1592,1076)(1040,1588,1652)(1043,1105,1201)(1048,1245,1694)(1056,1074,1505)(1058,1179,1557)(1062,1355,1677)(1063,1515,1279)(1067,1720,1165)(1068,1671,1071)(1078,1699,1816)(1079,1440,1751)(1080,1644,1724)(1083,1817,1516)(1085,1152,1414)(1087,1748,1521)(1093,1235,1452)(1097,1383,1801)(1108,1603,1532)(1110,1708,1327)(1114,1815,1800)(1115,1176,1567)(1116,1593,1225)(1124,1467,1545)(1125,1741,1635)(1127,1819,1683)(1129,1756,1812)(1140,1710,1551)(1141,1529,1627)(1146,1565,1775)(1147,1556,1821)(1149,1670,1587)(1151,1329,1664)(1158,1491,1803)(1162,1429,1376)(1164,1813,1787)(1166,1640,1601)(1168,1740,1395)(1171,1233,1433)(1178,1753,1770)(1180,1249,1244)(1184,1790,1477)(1194,1684,1822)(1199,1633,1698)(1202,1764,1611)(1217,1559,1818)(1227,1449,1457)(1232,1481,1316)(1237,1791,1673)(1252,1793,1322)(1253,1310,1430)(1255,1358,1399)(1256,1782,1404)(1257,1657,1768)(1259,1292,1680)(1260,1796,1450)(1266,1306,1277)(1268,1689,1746)(1275,1749,1284)(1278,1561,1280)(1285,1338,1566)(1299,1425,1823)(1307,1795,1382)(1309,1398,1799)(1318,1810,1503)(1325,1420,1792)(1334,1630,1374)(1340,1502,1696)(1348,1729,1541)(1359,1495,1575)(1363,1606,1563)(1368,1599,1752)(1378,1811,1639)(1379,1490,1619)(1385,1584,1571)(1388,1807,1750)(1394,1621,1396)(1421,1805,1661)(1431,1514,1760)(1451,1767,1554)(1461,1654,1723)(1484,1656,1614)(1496,1539,1747)(1513,1706,1647)(1520,1636,1725)(1538,1690,1625)(1550,1634,1662)(1573,1824,1788)(1617,1785,1797)(1631,1789,1809)(1678,1820,1733)(1691,1806,1778)(1726,1814,1771)(1743,1754,1804) >;
 
Copy content gap:G := Group( (1,2,6,24,149,810,1764,1203,1352,1761,1821,1631,563,95,16,4)(3,9,39,248,1152,1734,1075,462,624,1037,1658,1753,790,1559,922,172,748,1225,540,1547,1392,1428,862,260,801,580,1053,1708,716,1241,345,52,10,48,316,1332,1767,1736,760,138,22,134,749,1015,1129,1544,686,619,130,739,1192,1469,1524,450,1183,735,745,608,1132,1651,1755,1704,1403,970,327,93,556,1625,1785,870,160,868,752,456,570,1646,1792,1606,1557,584,146,798,1545,470,362,956,964,232,132,346,847,1615,1266,290,832,435,1209,1201,1165,1822,1396,452,864,1093,332,577,1641,643,1130,445,69,12)(5,17,96,564,1632,1809,1556,925,330,265,1202,1766,812,151,26,8)(7,27,164,890,1790,1467,1474,413,1042,634,661,1680,1140,1536,1279,830,621,266,41,261,1187,1323,701,897,666,112,609,1581,1098,786,933,175,28,171,314,541,1489,1528,453,238,37,235,1120,1303,1788,1808,1080,444,231,519,549,1620,1542,991,1555,1111,802,147,800,623,1689,1594,1258,527,85,14,81,506,1296,1663,820,1181,257,136,102,606,1570,1648,688,117,245,534,268,1001,942,1509,1153,518,233,121,705,1591,1633,910,1339,981,405,322,280,1237,1418,993,1357,1497,650,109,589,1055,1696,807,188,30)(11,56,368,1417,475,1553,969,223,639,502,1135,1706,1731,1121,958,1305,304,46,300,1295,1299,516,82,512,694,1375,1811,1013,576,778,924,180,334,548,1334,1297,1510,965,183,33,205,1038,1479,1634,1578,733,433,67,83,295,1284,1709,1367,903,249,237,720,1576,1824,1424,766,139,763,1023,520,1248,1412,1395,353,1346,954,691,140,770,1551,1573,1257,287,855,928,326,299,1293,495,1438,1104,228,226,133,616,1337,1710,784,757,1373,1034,312,47,309,1316,1294,1354,1018,759,653,1659,1450,1446,1439,1270,401,61)(13,73,460,466,1380,374,1125,738,667,660,1530,656,683,960,182,29,79,494,1161,1003,1443,379,869,684,141,772,1685,1715,1269,1700,1492,918,170,916,1586,1463,1028,198,776,1087,669,1653,644,108,640,1702,835,356,54,283,1163,1413,402,838,158,857,805,1371,568,671,1109,979,186,199,914,1601,1230,1723,1422,891,881,734,712,1656,1342,638,239,1126,689,1031,395,1228,1180,938,1386,451,1084,240,633,421,1484,1712,907,1245,439,68,436,1285,1022,1608,1786,873,730,234,746,535,1486,1137,1123,1327,478,76)(15,90,472,1415,1692,1437,681,1320,422,537,827,1776,1246,1348,324,49,272,1222,1529,1044,1783,860,211,680,267,1211,641,1703,1243,1122,441,333,91,546,1587,1301,819,1142,762,602,101,599,243,488,768,1252,529,499,595,1419,1716,1802,1102,1124,1070,1672,1205,1208,773,1372,988,1004,828,419,1198,561,1148,1800,1097,224,35,220,1088,383,1448,1032,1255,957,1240,281,43,277,949,179,946,397,407,131,597,1012,194,1008,1743,929,174,339,1206,1456,1714,1816,1514,874,216,704,1216,1447,1499,1408,769,620,104,75)(18,103,610,1682,1307,1520,1100,1464,474,463,1233,1388,1803,976,274,256,137,754,1483,1812,1813,1039,603,1351,496,275,1162,1157,1763,1433,1105,394,1065,604,1675,1737,1756,1605,648,203,337,1174,254,983,369,1421,727,127,125,598,1649,1011,1261,1679,1007,1020,526,1546,545,1619,1398,1173,951,491,649,1655,1820,1599,1282,1741,1024,197,554,92,550,1621,947,449,1478,418,122,710,1330,780,911,1733,750,399,1452,412,544,1617,1394,1691,1229,557,721,699,1725,1575,486,987,996,329,59,386,902,936,1797,1191,408,62)(19,111,658,1609,1823,1740,953,181,89,539,1218,1819,1382,1440,871,206,113,668,1056,1356,811,1560,1503,921,799,893,543,1616,1807,1026,1207,1107,771,605,567,1639,1744,1081,1720,943,415,479,980,1804,1384,1523,889,1086,1136,1664,1344,1360,336,1358,848,826,1353,510,833,843,1768,1513,513,1133,629,593,473,1432,1309,1256,834,528,1312,306,1311,1724,1400,507,1227,411,672,614,1686,1697,1752,817,190,184,533,273,1226,1156,301,824,163,885,679,575,1635,1600,791,1754,962,430,915,1238,1333,1399,354,1029,682,116)(20,119,695,509,1577,523,934,398,1461,1199,542,1436,377,57,373,1073,1066,596,1569,485,77,481,1366,340,51,335,1355,1588,899,1719,1108,229,115,677,1534,1283,913,1274,446,1025,572,311,94,454,1324,1442,1471,1092,804,1490,1552,908,168,905,974,952,363,547,999,1543,1423,628,1050,208,110,423,1488,1698,1596,1727,978,755,360,508,559,937,1387,865,159,793,706,1644,569,788,144,765,856,926,900,372,250,1158,1369,1472,723,758,670,1507,1611,1593,504,1517,443,477,169,912,1166,1630,803,1434,715,123)(21,126,722,1687,1654,1770,1236,622,904,1179,255,1176,1435,1579,1064,410,118,690,1482,1815,1750,1242,892,525,385,279,1168,1583,1411,1726,1453,714,709,782,1747,1139,1729,841,1350,325,492,1214,1217,1799,1370,1773,1470,1134,665,574,1650,1014,1500,846,156,72,50,328,469,74,465,1538,1186,259,626,587,1666,1571,1263,289,849,344,741,1304,1806,1155,1368,1194,884,632,625,726,1647,1699,1127,1271,1224,531,498,600,1278,1381,349,1378,724,796,145,792,1637,1795,1793,1281,530,86,87,302,1169,1154,1707,1049,736,129)(23,143,779,615,1082,218,887,428,500,308,1189,1604,1416,1030,877,222,794,1638,566,1574,744,1197,963,400,536,553,1585,1624,1364,1511,1059,210,124,573,1636,1150,842,155,25,152,740,298,1171,1213,366,458,1531,1048,743,785,1341,1475,1397,1521,447,348,166,898,742,471,1091,1493,1067,213,148,806,1676,646,483,286,153,490,78,42,270,351,53,70,162,879,1701,751,1614,1668,1674,767,876,365,55,361,1175,1468,1300,1441,1147,246,1146,697,1678,1519,717,737,201,32,58,307,251,674,341,440,258,40)(31,63,269,998,1322,310,378,1114,1068,753,651,1061,1077,1565,837,154,196,1021,1235,1231,1506,950,1758,1078,241,1131,1652,1671,1794,1718,764,1512,829,1250,284,1190,1782,850,713,1495,1069,630,607,209,1052,1310,1262,940,177,338,558,1535,961,1264,818,635,1149,594,100,591,1669,1592,840,851,1349,1210,276,1170,355,1393,1526,1110,659,654,585,1051,882,1717,1083,1167,252,392,511,1602,1798,992,1784,883,1047,678,1212,1677,1751,789,985,187,982,524,264,1200,1541,1410,1106,878,1118,775,613,1612,1580,487,1005,193)(34,212,1063,1713,1460,1244,282,836,204,331,263,1164,1550,1539,1693,858,214,655,1661,1345,1765,1562,1331,1409,618,296,45,292,1275,1781,1377,1473,777,142,99,586,1598,1626,1239,1251,347,1006,1314,1277,1459,1554,1622,551,728,675,663,1391,927,1325,313,357,1402,384,317,1336,1711,1195,262,1193,732,128,65,420,1481,1280,293,1035,404,505,1223,1319,562,381,1429,968,1071,702,1681,1814,1260,288,44,285,427,389,320,1338,468,1302,823,1427,637,107,578,1451,1141,1306,1313,977,431,1476,1328,1420,939,352,1076,217)(36,227,1101,1670,647,1259,1273,448,1494,532,894,1318,1548,1759,797,967,219,664,1657,1690,1749,787,1728,1033,457,342,1249,1618,1389,1379,376,1096,1094,711,1491,1613,1818,1566,1406,923,1019,521,464,1232,1390,1745,1757,1694,631,106,617,1688,1518,1769,816,191,173,359,1000,192,997,1597,1445,896,685,120,700,1449,1405,909,1365,932,438,1363,1425,1178,1796,1791,1775,1046,1043,692,612,1684,1787,1732,747,424,426,135,294,1177,935,1665,1103,1144,244,627,582,1662,1308,305,1036,202,66,84,522,1335,1505,1466,1112,230)(38,242,343,1041,1735,866,1247,975,403,920,297,1288,1221,1762,1515,517,406,583,98,579,1117,1730,1778,959,393,60,390,388,1455,1738,1430,861,225,105,581,1660,645,815,150,813,1115,323,278,253,945,995,1516,514,1116,731,1487,1533,1572,1359,989,687,825,364,319,1002,434,1504,1196,863,247,693,781,1057,1010,906,814,1017,195,167,901,497,176,189,822,1774,1627,774,698,719,761,1128,1772,944,178,367,1234,1287,1501,1540,1789,888,1584,1090,783,808,1099,1113,853,157,71,64,416,1072,930,986,895,165)(80,501,560,1628,1431,375,966,1062,1315,588,1465,1810,1272,291,1268,476,917,1290,461,1185,1801,1760,1182,1060,707,1343,321,1340,1748,1326,442,459,1215,552,1159,271,350,1383,859,1151,555,97,571,1009,1276,1253,1502,718,1407,703,417,1477,1817,1496,429,1143,708,601,1498,1265,1582,1683,611,955,1347,370,391,1457,1188,1027,1184,729,756,662,1645,1522,1779,1742,880,455,88,371,1089,467,437,1508,1074,215,592,590,1643,1568,484,839,852,480,493,1204,1172,1016,1771,821,1454,387,636,1610,1054,1746,1780,1561,972,503)(114,673,1642,919,1361,854,185,200,358,1291,1805,1219,489,875,161,872,1623,725,1058,642,1705,990,1404,425,538,315,1329,1629,1145,1532,867,409,657,1485,1640,1138,1567,1739,994,931,1286,303,1298,1317,948,1444,1603,1095,652,1374,1537,1607,1595,1722,1267,432,414,1289,1589,1695,1401,1527,1045,207,809,1590,565,1563,482,844,831,941,1362,845,1667,1220,1414,1721,1079,221,795,1376,1558,1777,1564,1254,984,1462,396,1292,1458,1549,1385,1525,515,1085,1040,1673,1426,1480,1119,971,973,236,382,318,1160,696,1321,380,886,676), (1,3,5)(2,7,8)(4,15,17)(6,25,26)(9,40,44)(10,20,53)(11,57,62)(12,65,70)(13,74,77)(14,82,86)(16,94,96)(18,104,108)(19,112,117)(21,127,130)(22,135,139)(23,144,146)(24,150,151)(27,165,168)(28,35,176)(29,179,183)(30,115,189)(31,192,194)(32,198,202)(33,69,209)(34,213,218)(36,228,231)(37,236,239)(38,243,245)(39,249,252)(41,262,267)(42,271,274)(43,102,282)(45,293,297)(46,301,305)(47,310,313)(48,232,319)(49,321,325)(50,329,332)(51,336,341)(52,343,346)(54,355,357)(55,362,366)(56,369,351)(58,381,383)(59,387,388)(60,391,394)(61,397,402)(63,412,413)(64,417,418)(66,424,427)(67,429,434)(68,437,440)(71,454,456)(72,304,458)(73,461,462)(75,473,238)(76,475,479)(78,489,491)(79,495,497)(80,502,504)(81,507,509)(83,379,285)(84,523,525)(85,223,448)(87,531,533)(88,535,537)(89,498,344)(90,136,190)(91,99,453)(92,551,555)(93,557,338)(95,562,564)(97,572,576)(98,580,584)(100,592,595)(101,600,603)(103,611,615)(105,623,483)(106,628,632)(107,635,638)(109,648,651)(110,465,656)(111,659,644)(113,669,671)(114,674,371)(116,616,683)(118,691,444)(119,696,630)(120,701,703)(121,175,679)(122,622,327)(123,713,640)(124,716,717)(125,718,719)(126,723,724)(128,730,733)(129,140,737)(131,742,546)(132,363,744)(133,747,748)(134,457,750)(137,755,757)(138,311,761)(141,773,197)(142,776,778)(143,780,784)(145,793,797)(147,687,803)(148,807,808)(149,811,812)(152,824,827)(153,160,833)(154,470,838)(155,216,843)(156,845,847)(157,850,854)(158,188,792)(159,863,866)(161,873,876)(162,880,882)(163,749,887)(164,891,892)(166,899,801)(167,902,903)(169,913,915)(170,468,919)(171,518,415)(172,699,923)(173,924,650)(174,927,930)(177,255,481)(178,942,945)(180,951,539)(181,275,954)(182,956,961)(184,463,969)(185,971,974)(186,976,980)(187,983,986)(191,918,995)(193,1003,1006)(195,1016,1018)(196,1022,510)(199,950,905)(200,1032,1033)(201,869,990)(203,775,1037)(204,426,932)(205,1039,1041)(206,697,1010)(207,1044,1046)(208,1049,1051)(210,287,626)(211,997,1061)(212,1064,607)(214,1069,591)(215,1072,337)(217,746,1077)(219,1084,767)(220,1089,796)(221,1091,474)(222,286,637)(224,349,1052)(225,1098,1099)(226,1100,593)(227,1102,1103)(229,1106,1109)(230,240,1113)(233,324,1117)(234,1119,621)(235,994,1121)(237,1122,1123)(241,1132,401)(242,1135,1137)(244,1142,1145)(246,1081,1148)(247,1150,614)(248,1153,361)(250,568,673)(251,1163,916)(253,500,991)(254,1173,1175)(256,395,472)(257,356,948)(258,940,1185)(259,624,496)(260,901,798)(261,1188,1191)(263,1197,735)(264,384,849)(265,1203,1205)(266,1207,1208)(268,450,1213)(269,1215,1216)(270,277,680)(272,598,1224)(273,928,727)(276,519,1229)(278,295,353)(279,443,1236)(280,1196,1239)(281,566,1211)(283,561,707)(284,1021,390)(288,1177,1011)(289,1001,1264)(290,1265,1267)(291,1269,879)(292,1276,1271)(294,1282,1283)(296,962,1287)(298,1221,528)(299,1294,1234)(300,1296,1297)(302,1251,392)(303,1303,787)(306,477,1313)(307,1220,1315)(308,1154,909)(309,1317,1320)(312,449,1002)(314,1112,636)(315,1330,1331)(316,736,725)(317,814,820)(318,1337,908)(320,1339,597)(322,515,1346)(323,1333,1035)(326,380,1181)(328,446,1350)(330,1352,745)(331,835,1354)(333,779,1012)(334,376,752)(335,1356,1357)(339,1345,1364)(340,1365,492)(342,988,1273)(345,1055,1372)(347,490,1030)(348,1377,608)(350,1026,1139)(352,1391,1392)(354,1397,706)(358,1405,1288)(359,769,1406)(360,1408,1409)(364,1412,1413)(365,516,904)(367,890,1416)(368,1418,1295)(370,753,422)(372,1424,1426)(373,1075,1192)(374,848,545)(375,1411,1432)(377,655,1437)(378,1439,578)(382,1446,1447)(385,476,599)(386,1453,1088)(389,439,1104)(393,1459,1448)(396,1460,1463)(398,846,1231)(399,774,1465)(400,1027,1386)(403,1468,893)(404,982,998)(405,1095,1443)(406,1009,433)(407,1469,1442)(408,501,675)(409,1323,1172)(410,629,709)(411,663,1472)(414,1475,1343)(416,558,1250)(419,1479,1480)(420,947,1389)(421,1341,1486)(423,1489,1436)(425,1082,649)(428,1493,1402)(430,1291,1498)(431,828,1499)(432,1500,1501)(435,1507,1455)(436,466,1312)(438,1492,1511)(441,643,1517)(442,1518,1311)(445,1519,609)(447,878,1522)(451,836,520)(452,1390,722)(455,1530,577)(459,1533,721)(460,1289,1534)(464,1536,1537)(467,1454,1542)(469,1544,1308)(471,1546,966)(478,1555,1214)(480,1558,1238)(482,1464,794)(484,817,1381)(485,508,1570)(486,1574,1576)(487,1579,1581)(488,1167,1583)(493,754,977)(494,1585,1586)(499,1342,662)(503,1591,1361)(505,1004,1596)(506,1597,1485)(511,1286,788)(512,996,605)(513,1488,540)(514,789,1527)(517,906,1050)(521,1005,1300)(522,1263,1604)(524,547,1607)(526,1070,1608)(527,594,604)(529,1609,1441)(530,894,1008)(532,688,1610)(534,897,1353)(536,1384,1577)(538,1615,1036)(541,1401,1143)(542,570,953)(543,834,1189)(544,895,1281)(548,1422,826)(549,946,1474)(550,1508,1528)(552,1623,1624)(553,1549,756)(554,1073,965)(556,888,1626)(559,567,760)(560,1086,1590)(563,1400,1632)(565,1223,987)(569,1190,955)(571,1462,1648)(573,1651,933)(574,1427,1131)(575,857,766)(579,712,1013)(581,1375,1578)(582,1663,1160)(583,1649,1270)(585,1065,619)(586,1665,1653)(587,862,1667)(588,1210,1198)(589,1243,1258)(590,1362,1668)(596,1187,937)(601,1476,1007)(602,1319,1674)(606,1272,1679)(610,979,682)(612,1195,1685)(613,678,1487)(617,1435,646)(618,1349,1602)(620,1594,1053)(625,729,1456)(627,818,842)(631,1096,777)(633,1598,1695)(634,855,1134)(639,1700,1193)(641,1025,1704)(642,1347,785)(645,676,1707)(647,1170,1240)(652,1709,1419)(653,1126,1473)(654,698,1212)(657,1711,1712)(658,877,922)(660,1552,1458)(661,1560,1543)(664,1428,1219)(665,714,771)(666,825,1714)(667,1715,672)(668,1092,1622)(670,1438,1204)(677,1417,1298)(681,1716,728)(684,1718,1719)(685,861,907)(686,1713,1540)(689,1721,1531)(690,860,1466)(692,1692,1445)(693,1688,1629)(694,1722,830)(695,1159,1047)(700,1301,1470)(702,889,1660)(704,1161,1290)(705,816,1407)(708,1248,1324)(710,958,1133)(711,1553,1209)(715,1045,1444)(720,1727,1020)(726,1471,1186)(731,1054,1351)(732,1094,967)(734,1703,1373)(738,1717,1434)(739,1060,1230)(740,1393,1728)(741,1305,1497)(743,1562,1222)(751,1138,917)(758,1734,949)(759,972,1735)(762,939,1572)(763,1107,1655)(764,1738,984)(765,1031,992)(768,1742,1582)(770,1744,1745)(772,1612,885)(781,1681,1693)(782,1478,1206)(783,1659,1731)(786,1650,1526)(790,1261,1737)(791,1423,1701)(795,1332,1757)(799,914,938)(800,960,884)(802,925,1761)(804,1369,1136)(805,1687,1387)(806,1014,1759)(809,1548,1057)(810,1765,1766)(813,1302,1658)(815,864,1336)(819,1523,1600)(821,1410,1772)(822,1605,1482)(823,1120,1247)(829,999,1643)(831,1702,1059)(832,1569,1226)(837,1509,1169)(839,1779,1246)(840,1367,1314)(841,1293,1156)(844,1512,1616)(851,1155,1776)(852,1646,1739)(853,1758,1780)(856,973,1254)(858,1090,1344)(859,1547,1525)(865,1118,1666)(867,1784,1128)(868,1174,1144)(870,935,1637)(871,1676,1686)(872,1524,1321)(874,1370,1669)(875,883,1697)(881,1241,1580)(886,1736,1628)(896,1042,1023)(898,1157,1510)(900,1730,1111)(910,1483,1326)(911,1794,1774)(912,1682,1732)(920,1335,1777)(921,1328,1274)(926,1262,1380)(929,1564,1019)(931,1755,1705)(934,1017,1762)(936,1781,1613)(941,1130,1595)(943,1228,1535)(944,1028,1494)(952,985,1786)(957,1769,1304)(959,1763,1798)(963,1182,1506)(964,1620,1415)(968,1066,1802)(970,1371,1645)(975,1504,1366)(978,1403,1641)(981,1672,1218)(989,1773,1675)(993,1589,1101)(1000,1808,1642)(1015,1242,1618)(1024,1638,1568)(1029,1360,1783)(1034,1183,1200)(1038,1592,1076)(1040,1588,1652)(1043,1105,1201)(1048,1245,1694)(1056,1074,1505)(1058,1179,1557)(1062,1355,1677)(1063,1515,1279)(1067,1720,1165)(1068,1671,1071)(1078,1699,1816)(1079,1440,1751)(1080,1644,1724)(1083,1817,1516)(1085,1152,1414)(1087,1748,1521)(1093,1235,1452)(1097,1383,1801)(1108,1603,1532)(1110,1708,1327)(1114,1815,1800)(1115,1176,1567)(1116,1593,1225)(1124,1467,1545)(1125,1741,1635)(1127,1819,1683)(1129,1756,1812)(1140,1710,1551)(1141,1529,1627)(1146,1565,1775)(1147,1556,1821)(1149,1670,1587)(1151,1329,1664)(1158,1491,1803)(1162,1429,1376)(1164,1813,1787)(1166,1640,1601)(1168,1740,1395)(1171,1233,1433)(1178,1753,1770)(1180,1249,1244)(1184,1790,1477)(1194,1684,1822)(1199,1633,1698)(1202,1764,1611)(1217,1559,1818)(1227,1449,1457)(1232,1481,1316)(1237,1791,1673)(1252,1793,1322)(1253,1310,1430)(1255,1358,1399)(1256,1782,1404)(1257,1657,1768)(1259,1292,1680)(1260,1796,1450)(1266,1306,1277)(1268,1689,1746)(1275,1749,1284)(1278,1561,1280)(1285,1338,1566)(1299,1425,1823)(1307,1795,1382)(1309,1398,1799)(1318,1810,1503)(1325,1420,1792)(1334,1630,1374)(1340,1502,1696)(1348,1729,1541)(1359,1495,1575)(1363,1606,1563)(1368,1599,1752)(1378,1811,1639)(1379,1490,1619)(1385,1584,1571)(1388,1807,1750)(1394,1621,1396)(1421,1805,1661)(1431,1514,1760)(1451,1767,1554)(1461,1654,1723)(1484,1656,1614)(1496,1539,1747)(1513,1706,1647)(1520,1636,1725)(1538,1690,1625)(1550,1634,1662)(1573,1824,1788)(1617,1785,1797)(1631,1789,1809)(1678,1820,1733)(1691,1806,1778)(1726,1814,1771)(1743,1754,1804) );
 
Copy content sage:G = PermutationGroup(['(1,2,6,24,149,810,1764,1203,1352,1761,1821,1631,563,95,16,4)(3,9,39,248,1152,1734,1075,462,624,1037,1658,1753,790,1559,922,172,748,1225,540,1547,1392,1428,862,260,801,580,1053,1708,716,1241,345,52,10,48,316,1332,1767,1736,760,138,22,134,749,1015,1129,1544,686,619,130,739,1192,1469,1524,450,1183,735,745,608,1132,1651,1755,1704,1403,970,327,93,556,1625,1785,870,160,868,752,456,570,1646,1792,1606,1557,584,146,798,1545,470,362,956,964,232,132,346,847,1615,1266,290,832,435,1209,1201,1165,1822,1396,452,864,1093,332,577,1641,643,1130,445,69,12)(5,17,96,564,1632,1809,1556,925,330,265,1202,1766,812,151,26,8)(7,27,164,890,1790,1467,1474,413,1042,634,661,1680,1140,1536,1279,830,621,266,41,261,1187,1323,701,897,666,112,609,1581,1098,786,933,175,28,171,314,541,1489,1528,453,238,37,235,1120,1303,1788,1808,1080,444,231,519,549,1620,1542,991,1555,1111,802,147,800,623,1689,1594,1258,527,85,14,81,506,1296,1663,820,1181,257,136,102,606,1570,1648,688,117,245,534,268,1001,942,1509,1153,518,233,121,705,1591,1633,910,1339,981,405,322,280,1237,1418,993,1357,1497,650,109,589,1055,1696,807,188,30)(11,56,368,1417,475,1553,969,223,639,502,1135,1706,1731,1121,958,1305,304,46,300,1295,1299,516,82,512,694,1375,1811,1013,576,778,924,180,334,548,1334,1297,1510,965,183,33,205,1038,1479,1634,1578,733,433,67,83,295,1284,1709,1367,903,249,237,720,1576,1824,1424,766,139,763,1023,520,1248,1412,1395,353,1346,954,691,140,770,1551,1573,1257,287,855,928,326,299,1293,495,1438,1104,228,226,133,616,1337,1710,784,757,1373,1034,312,47,309,1316,1294,1354,1018,759,653,1659,1450,1446,1439,1270,401,61)(13,73,460,466,1380,374,1125,738,667,660,1530,656,683,960,182,29,79,494,1161,1003,1443,379,869,684,141,772,1685,1715,1269,1700,1492,918,170,916,1586,1463,1028,198,776,1087,669,1653,644,108,640,1702,835,356,54,283,1163,1413,402,838,158,857,805,1371,568,671,1109,979,186,199,914,1601,1230,1723,1422,891,881,734,712,1656,1342,638,239,1126,689,1031,395,1228,1180,938,1386,451,1084,240,633,421,1484,1712,907,1245,439,68,436,1285,1022,1608,1786,873,730,234,746,535,1486,1137,1123,1327,478,76)(15,90,472,1415,1692,1437,681,1320,422,537,827,1776,1246,1348,324,49,272,1222,1529,1044,1783,860,211,680,267,1211,641,1703,1243,1122,441,333,91,546,1587,1301,819,1142,762,602,101,599,243,488,768,1252,529,499,595,1419,1716,1802,1102,1124,1070,1672,1205,1208,773,1372,988,1004,828,419,1198,561,1148,1800,1097,224,35,220,1088,383,1448,1032,1255,957,1240,281,43,277,949,179,946,397,407,131,597,1012,194,1008,1743,929,174,339,1206,1456,1714,1816,1514,874,216,704,1216,1447,1499,1408,769,620,104,75)(18,103,610,1682,1307,1520,1100,1464,474,463,1233,1388,1803,976,274,256,137,754,1483,1812,1813,1039,603,1351,496,275,1162,1157,1763,1433,1105,394,1065,604,1675,1737,1756,1605,648,203,337,1174,254,983,369,1421,727,127,125,598,1649,1011,1261,1679,1007,1020,526,1546,545,1619,1398,1173,951,491,649,1655,1820,1599,1282,1741,1024,197,554,92,550,1621,947,449,1478,418,122,710,1330,780,911,1733,750,399,1452,412,544,1617,1394,1691,1229,557,721,699,1725,1575,486,987,996,329,59,386,902,936,1797,1191,408,62)(19,111,658,1609,1823,1740,953,181,89,539,1218,1819,1382,1440,871,206,113,668,1056,1356,811,1560,1503,921,799,893,543,1616,1807,1026,1207,1107,771,605,567,1639,1744,1081,1720,943,415,479,980,1804,1384,1523,889,1086,1136,1664,1344,1360,336,1358,848,826,1353,510,833,843,1768,1513,513,1133,629,593,473,1432,1309,1256,834,528,1312,306,1311,1724,1400,507,1227,411,672,614,1686,1697,1752,817,190,184,533,273,1226,1156,301,824,163,885,679,575,1635,1600,791,1754,962,430,915,1238,1333,1399,354,1029,682,116)(20,119,695,509,1577,523,934,398,1461,1199,542,1436,377,57,373,1073,1066,596,1569,485,77,481,1366,340,51,335,1355,1588,899,1719,1108,229,115,677,1534,1283,913,1274,446,1025,572,311,94,454,1324,1442,1471,1092,804,1490,1552,908,168,905,974,952,363,547,999,1543,1423,628,1050,208,110,423,1488,1698,1596,1727,978,755,360,508,559,937,1387,865,159,793,706,1644,569,788,144,765,856,926,900,372,250,1158,1369,1472,723,758,670,1507,1611,1593,504,1517,443,477,169,912,1166,1630,803,1434,715,123)(21,126,722,1687,1654,1770,1236,622,904,1179,255,1176,1435,1579,1064,410,118,690,1482,1815,1750,1242,892,525,385,279,1168,1583,1411,1726,1453,714,709,782,1747,1139,1729,841,1350,325,492,1214,1217,1799,1370,1773,1470,1134,665,574,1650,1014,1500,846,156,72,50,328,469,74,465,1538,1186,259,626,587,1666,1571,1263,289,849,344,741,1304,1806,1155,1368,1194,884,632,625,726,1647,1699,1127,1271,1224,531,498,600,1278,1381,349,1378,724,796,145,792,1637,1795,1793,1281,530,86,87,302,1169,1154,1707,1049,736,129)(23,143,779,615,1082,218,887,428,500,308,1189,1604,1416,1030,877,222,794,1638,566,1574,744,1197,963,400,536,553,1585,1624,1364,1511,1059,210,124,573,1636,1150,842,155,25,152,740,298,1171,1213,366,458,1531,1048,743,785,1341,1475,1397,1521,447,348,166,898,742,471,1091,1493,1067,213,148,806,1676,646,483,286,153,490,78,42,270,351,53,70,162,879,1701,751,1614,1668,1674,767,876,365,55,361,1175,1468,1300,1441,1147,246,1146,697,1678,1519,717,737,201,32,58,307,251,674,341,440,258,40)(31,63,269,998,1322,310,378,1114,1068,753,651,1061,1077,1565,837,154,196,1021,1235,1231,1506,950,1758,1078,241,1131,1652,1671,1794,1718,764,1512,829,1250,284,1190,1782,850,713,1495,1069,630,607,209,1052,1310,1262,940,177,338,558,1535,961,1264,818,635,1149,594,100,591,1669,1592,840,851,1349,1210,276,1170,355,1393,1526,1110,659,654,585,1051,882,1717,1083,1167,252,392,511,1602,1798,992,1784,883,1047,678,1212,1677,1751,789,985,187,982,524,264,1200,1541,1410,1106,878,1118,775,613,1612,1580,487,1005,193)(34,212,1063,1713,1460,1244,282,836,204,331,263,1164,1550,1539,1693,858,214,655,1661,1345,1765,1562,1331,1409,618,296,45,292,1275,1781,1377,1473,777,142,99,586,1598,1626,1239,1251,347,1006,1314,1277,1459,1554,1622,551,728,675,663,1391,927,1325,313,357,1402,384,317,1336,1711,1195,262,1193,732,128,65,420,1481,1280,293,1035,404,505,1223,1319,562,381,1429,968,1071,702,1681,1814,1260,288,44,285,427,389,320,1338,468,1302,823,1427,637,107,578,1451,1141,1306,1313,977,431,1476,1328,1420,939,352,1076,217)(36,227,1101,1670,647,1259,1273,448,1494,532,894,1318,1548,1759,797,967,219,664,1657,1690,1749,787,1728,1033,457,342,1249,1618,1389,1379,376,1096,1094,711,1491,1613,1818,1566,1406,923,1019,521,464,1232,1390,1745,1757,1694,631,106,617,1688,1518,1769,816,191,173,359,1000,192,997,1597,1445,896,685,120,700,1449,1405,909,1365,932,438,1363,1425,1178,1796,1791,1775,1046,1043,692,612,1684,1787,1732,747,424,426,135,294,1177,935,1665,1103,1144,244,627,582,1662,1308,305,1036,202,66,84,522,1335,1505,1466,1112,230)(38,242,343,1041,1735,866,1247,975,403,920,297,1288,1221,1762,1515,517,406,583,98,579,1117,1730,1778,959,393,60,390,388,1455,1738,1430,861,225,105,581,1660,645,815,150,813,1115,323,278,253,945,995,1516,514,1116,731,1487,1533,1572,1359,989,687,825,364,319,1002,434,1504,1196,863,247,693,781,1057,1010,906,814,1017,195,167,901,497,176,189,822,1774,1627,774,698,719,761,1128,1772,944,178,367,1234,1287,1501,1540,1789,888,1584,1090,783,808,1099,1113,853,157,71,64,416,1072,930,986,895,165)(80,501,560,1628,1431,375,966,1062,1315,588,1465,1810,1272,291,1268,476,917,1290,461,1185,1801,1760,1182,1060,707,1343,321,1340,1748,1326,442,459,1215,552,1159,271,350,1383,859,1151,555,97,571,1009,1276,1253,1502,718,1407,703,417,1477,1817,1496,429,1143,708,601,1498,1265,1582,1683,611,955,1347,370,391,1457,1188,1027,1184,729,756,662,1645,1522,1779,1742,880,455,88,371,1089,467,437,1508,1074,215,592,590,1643,1568,484,839,852,480,493,1204,1172,1016,1771,821,1454,387,636,1610,1054,1746,1780,1561,972,503)(114,673,1642,919,1361,854,185,200,358,1291,1805,1219,489,875,161,872,1623,725,1058,642,1705,990,1404,425,538,315,1329,1629,1145,1532,867,409,657,1485,1640,1138,1567,1739,994,931,1286,303,1298,1317,948,1444,1603,1095,652,1374,1537,1607,1595,1722,1267,432,414,1289,1589,1695,1401,1527,1045,207,809,1590,565,1563,482,844,831,941,1362,845,1667,1220,1414,1721,1079,221,795,1376,1558,1777,1564,1254,984,1462,396,1292,1458,1549,1385,1525,515,1085,1040,1673,1426,1480,1119,971,973,236,382,318,1160,696,1321,380,886,676)', '(1,3,5)(2,7,8)(4,15,17)(6,25,26)(9,40,44)(10,20,53)(11,57,62)(12,65,70)(13,74,77)(14,82,86)(16,94,96)(18,104,108)(19,112,117)(21,127,130)(22,135,139)(23,144,146)(24,150,151)(27,165,168)(28,35,176)(29,179,183)(30,115,189)(31,192,194)(32,198,202)(33,69,209)(34,213,218)(36,228,231)(37,236,239)(38,243,245)(39,249,252)(41,262,267)(42,271,274)(43,102,282)(45,293,297)(46,301,305)(47,310,313)(48,232,319)(49,321,325)(50,329,332)(51,336,341)(52,343,346)(54,355,357)(55,362,366)(56,369,351)(58,381,383)(59,387,388)(60,391,394)(61,397,402)(63,412,413)(64,417,418)(66,424,427)(67,429,434)(68,437,440)(71,454,456)(72,304,458)(73,461,462)(75,473,238)(76,475,479)(78,489,491)(79,495,497)(80,502,504)(81,507,509)(83,379,285)(84,523,525)(85,223,448)(87,531,533)(88,535,537)(89,498,344)(90,136,190)(91,99,453)(92,551,555)(93,557,338)(95,562,564)(97,572,576)(98,580,584)(100,592,595)(101,600,603)(103,611,615)(105,623,483)(106,628,632)(107,635,638)(109,648,651)(110,465,656)(111,659,644)(113,669,671)(114,674,371)(116,616,683)(118,691,444)(119,696,630)(120,701,703)(121,175,679)(122,622,327)(123,713,640)(124,716,717)(125,718,719)(126,723,724)(128,730,733)(129,140,737)(131,742,546)(132,363,744)(133,747,748)(134,457,750)(137,755,757)(138,311,761)(141,773,197)(142,776,778)(143,780,784)(145,793,797)(147,687,803)(148,807,808)(149,811,812)(152,824,827)(153,160,833)(154,470,838)(155,216,843)(156,845,847)(157,850,854)(158,188,792)(159,863,866)(161,873,876)(162,880,882)(163,749,887)(164,891,892)(166,899,801)(167,902,903)(169,913,915)(170,468,919)(171,518,415)(172,699,923)(173,924,650)(174,927,930)(177,255,481)(178,942,945)(180,951,539)(181,275,954)(182,956,961)(184,463,969)(185,971,974)(186,976,980)(187,983,986)(191,918,995)(193,1003,1006)(195,1016,1018)(196,1022,510)(199,950,905)(200,1032,1033)(201,869,990)(203,775,1037)(204,426,932)(205,1039,1041)(206,697,1010)(207,1044,1046)(208,1049,1051)(210,287,626)(211,997,1061)(212,1064,607)(214,1069,591)(215,1072,337)(217,746,1077)(219,1084,767)(220,1089,796)(221,1091,474)(222,286,637)(224,349,1052)(225,1098,1099)(226,1100,593)(227,1102,1103)(229,1106,1109)(230,240,1113)(233,324,1117)(234,1119,621)(235,994,1121)(237,1122,1123)(241,1132,401)(242,1135,1137)(244,1142,1145)(246,1081,1148)(247,1150,614)(248,1153,361)(250,568,673)(251,1163,916)(253,500,991)(254,1173,1175)(256,395,472)(257,356,948)(258,940,1185)(259,624,496)(260,901,798)(261,1188,1191)(263,1197,735)(264,384,849)(265,1203,1205)(266,1207,1208)(268,450,1213)(269,1215,1216)(270,277,680)(272,598,1224)(273,928,727)(276,519,1229)(278,295,353)(279,443,1236)(280,1196,1239)(281,566,1211)(283,561,707)(284,1021,390)(288,1177,1011)(289,1001,1264)(290,1265,1267)(291,1269,879)(292,1276,1271)(294,1282,1283)(296,962,1287)(298,1221,528)(299,1294,1234)(300,1296,1297)(302,1251,392)(303,1303,787)(306,477,1313)(307,1220,1315)(308,1154,909)(309,1317,1320)(312,449,1002)(314,1112,636)(315,1330,1331)(316,736,725)(317,814,820)(318,1337,908)(320,1339,597)(322,515,1346)(323,1333,1035)(326,380,1181)(328,446,1350)(330,1352,745)(331,835,1354)(333,779,1012)(334,376,752)(335,1356,1357)(339,1345,1364)(340,1365,492)(342,988,1273)(345,1055,1372)(347,490,1030)(348,1377,608)(350,1026,1139)(352,1391,1392)(354,1397,706)(358,1405,1288)(359,769,1406)(360,1408,1409)(364,1412,1413)(365,516,904)(367,890,1416)(368,1418,1295)(370,753,422)(372,1424,1426)(373,1075,1192)(374,848,545)(375,1411,1432)(377,655,1437)(378,1439,578)(382,1446,1447)(385,476,599)(386,1453,1088)(389,439,1104)(393,1459,1448)(396,1460,1463)(398,846,1231)(399,774,1465)(400,1027,1386)(403,1468,893)(404,982,998)(405,1095,1443)(406,1009,433)(407,1469,1442)(408,501,675)(409,1323,1172)(410,629,709)(411,663,1472)(414,1475,1343)(416,558,1250)(419,1479,1480)(420,947,1389)(421,1341,1486)(423,1489,1436)(425,1082,649)(428,1493,1402)(430,1291,1498)(431,828,1499)(432,1500,1501)(435,1507,1455)(436,466,1312)(438,1492,1511)(441,643,1517)(442,1518,1311)(445,1519,609)(447,878,1522)(451,836,520)(452,1390,722)(455,1530,577)(459,1533,721)(460,1289,1534)(464,1536,1537)(467,1454,1542)(469,1544,1308)(471,1546,966)(478,1555,1214)(480,1558,1238)(482,1464,794)(484,817,1381)(485,508,1570)(486,1574,1576)(487,1579,1581)(488,1167,1583)(493,754,977)(494,1585,1586)(499,1342,662)(503,1591,1361)(505,1004,1596)(506,1597,1485)(511,1286,788)(512,996,605)(513,1488,540)(514,789,1527)(517,906,1050)(521,1005,1300)(522,1263,1604)(524,547,1607)(526,1070,1608)(527,594,604)(529,1609,1441)(530,894,1008)(532,688,1610)(534,897,1353)(536,1384,1577)(538,1615,1036)(541,1401,1143)(542,570,953)(543,834,1189)(544,895,1281)(548,1422,826)(549,946,1474)(550,1508,1528)(552,1623,1624)(553,1549,756)(554,1073,965)(556,888,1626)(559,567,760)(560,1086,1590)(563,1400,1632)(565,1223,987)(569,1190,955)(571,1462,1648)(573,1651,933)(574,1427,1131)(575,857,766)(579,712,1013)(581,1375,1578)(582,1663,1160)(583,1649,1270)(585,1065,619)(586,1665,1653)(587,862,1667)(588,1210,1198)(589,1243,1258)(590,1362,1668)(596,1187,937)(601,1476,1007)(602,1319,1674)(606,1272,1679)(610,979,682)(612,1195,1685)(613,678,1487)(617,1435,646)(618,1349,1602)(620,1594,1053)(625,729,1456)(627,818,842)(631,1096,777)(633,1598,1695)(634,855,1134)(639,1700,1193)(641,1025,1704)(642,1347,785)(645,676,1707)(647,1170,1240)(652,1709,1419)(653,1126,1473)(654,698,1212)(657,1711,1712)(658,877,922)(660,1552,1458)(661,1560,1543)(664,1428,1219)(665,714,771)(666,825,1714)(667,1715,672)(668,1092,1622)(670,1438,1204)(677,1417,1298)(681,1716,728)(684,1718,1719)(685,861,907)(686,1713,1540)(689,1721,1531)(690,860,1466)(692,1692,1445)(693,1688,1629)(694,1722,830)(695,1159,1047)(700,1301,1470)(702,889,1660)(704,1161,1290)(705,816,1407)(708,1248,1324)(710,958,1133)(711,1553,1209)(715,1045,1444)(720,1727,1020)(726,1471,1186)(731,1054,1351)(732,1094,967)(734,1703,1373)(738,1717,1434)(739,1060,1230)(740,1393,1728)(741,1305,1497)(743,1562,1222)(751,1138,917)(758,1734,949)(759,972,1735)(762,939,1572)(763,1107,1655)(764,1738,984)(765,1031,992)(768,1742,1582)(770,1744,1745)(772,1612,885)(781,1681,1693)(782,1478,1206)(783,1659,1731)(786,1650,1526)(790,1261,1737)(791,1423,1701)(795,1332,1757)(799,914,938)(800,960,884)(802,925,1761)(804,1369,1136)(805,1687,1387)(806,1014,1759)(809,1548,1057)(810,1765,1766)(813,1302,1658)(815,864,1336)(819,1523,1600)(821,1410,1772)(822,1605,1482)(823,1120,1247)(829,999,1643)(831,1702,1059)(832,1569,1226)(837,1509,1169)(839,1779,1246)(840,1367,1314)(841,1293,1156)(844,1512,1616)(851,1155,1776)(852,1646,1739)(853,1758,1780)(856,973,1254)(858,1090,1344)(859,1547,1525)(865,1118,1666)(867,1784,1128)(868,1174,1144)(870,935,1637)(871,1676,1686)(872,1524,1321)(874,1370,1669)(875,883,1697)(881,1241,1580)(886,1736,1628)(896,1042,1023)(898,1157,1510)(900,1730,1111)(910,1483,1326)(911,1794,1774)(912,1682,1732)(920,1335,1777)(921,1328,1274)(926,1262,1380)(929,1564,1019)(931,1755,1705)(934,1017,1762)(936,1781,1613)(941,1130,1595)(943,1228,1535)(944,1028,1494)(952,985,1786)(957,1769,1304)(959,1763,1798)(963,1182,1506)(964,1620,1415)(968,1066,1802)(970,1371,1645)(975,1504,1366)(978,1403,1641)(981,1672,1218)(989,1773,1675)(993,1589,1101)(1000,1808,1642)(1015,1242,1618)(1024,1638,1568)(1029,1360,1783)(1034,1183,1200)(1038,1592,1076)(1040,1588,1652)(1043,1105,1201)(1048,1245,1694)(1056,1074,1505)(1058,1179,1557)(1062,1355,1677)(1063,1515,1279)(1067,1720,1165)(1068,1671,1071)(1078,1699,1816)(1079,1440,1751)(1080,1644,1724)(1083,1817,1516)(1085,1152,1414)(1087,1748,1521)(1093,1235,1452)(1097,1383,1801)(1108,1603,1532)(1110,1708,1327)(1114,1815,1800)(1115,1176,1567)(1116,1593,1225)(1124,1467,1545)(1125,1741,1635)(1127,1819,1683)(1129,1756,1812)(1140,1710,1551)(1141,1529,1627)(1146,1565,1775)(1147,1556,1821)(1149,1670,1587)(1151,1329,1664)(1158,1491,1803)(1162,1429,1376)(1164,1813,1787)(1166,1640,1601)(1168,1740,1395)(1171,1233,1433)(1178,1753,1770)(1180,1249,1244)(1184,1790,1477)(1194,1684,1822)(1199,1633,1698)(1202,1764,1611)(1217,1559,1818)(1227,1449,1457)(1232,1481,1316)(1237,1791,1673)(1252,1793,1322)(1253,1310,1430)(1255,1358,1399)(1256,1782,1404)(1257,1657,1768)(1259,1292,1680)(1260,1796,1450)(1266,1306,1277)(1268,1689,1746)(1275,1749,1284)(1278,1561,1280)(1285,1338,1566)(1299,1425,1823)(1307,1795,1382)(1309,1398,1799)(1318,1810,1503)(1325,1420,1792)(1334,1630,1374)(1340,1502,1696)(1348,1729,1541)(1359,1495,1575)(1363,1606,1563)(1368,1599,1752)(1378,1811,1639)(1379,1490,1619)(1385,1584,1571)(1388,1807,1750)(1394,1621,1396)(1421,1805,1661)(1431,1514,1760)(1451,1767,1554)(1461,1654,1723)(1484,1656,1614)(1496,1539,1747)(1513,1706,1647)(1520,1636,1725)(1538,1690,1625)(1550,1634,1662)(1573,1824,1788)(1617,1785,1797)(1631,1789,1809)(1678,1820,1733)(1691,1806,1778)(1726,1814,1771)(1743,1754,1804)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 1 & 1 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{113})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(113) | [[1, 1, 0, 1], [1, 0, 1, 1]] >;
 
Copy content gap:G := Group([[[ Z(113)^0, Z(113)^0 ], [ 0*Z(113), Z(113)^0 ]], [[ Z(113)^0, 0*Z(113) ], [ Z(113)^0, Z(113)^0 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(113), 2, 2) G = MatrixGroup([MS([[1, 1], [0, 1]]), MS([[1, 0], [1, 1]])])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as matrices in $\SL(2,113)$.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

Subgroup data has not been computed.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $117 \times 117$ character table is not available for this group.

Rational character table

The $18 \times 18$ rational character table is not available for this group.