Properties

Label 141...728.gt
Order \( 2^{15} \cdot 3^{16} \)
Exponent \( 2^{4} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,14,27,2,13,26)(3,15,25)(4,23,16,11,5,22,18,10)(6,24,17,12)(7,8,9)(28,35,29,36,30,34)(31,32), (1,30,14,17,2,29,15,18,3,28,13,16)(4,25)(5,27)(6,26)(7,36,8,35)(9,34)(10,19,12,20)(11,21)(22,32)(23,33,24,31), (1,27,15,3,25,14)(2,26,13)(4,17,28,5,18,29,6,16,30)(7,9)(11,12)(19,21,20)(22,35,24,36,23,34)(31,32,33) >;
 
Copy content gap:G := Group( (1,14,27,2,13,26)(3,15,25)(4,23,16,11,5,22,18,10)(6,24,17,12)(7,8,9)(28,35,29,36,30,34)(31,32), (1,30,14,17,2,29,15,18,3,28,13,16)(4,25)(5,27)(6,26)(7,36,8,35)(9,34)(10,19,12,20)(11,21)(22,32)(23,33,24,31), (1,27,15,3,25,14)(2,26,13)(4,17,28,5,18,29,6,16,30)(7,9)(11,12)(19,21,20)(22,35,24,36,23,34)(31,32,33) );
 
Copy content sage:G = PermutationGroup(['(1,14,27,2,13,26)(3,15,25)(4,23,16,11,5,22,18,10)(6,24,17,12)(7,8,9)(28,35,29,36,30,34)(31,32)', '(1,30,14,17,2,29,15,18,3,28,13,16)(4,25)(5,27)(6,26)(7,36,8,35)(9,34)(10,19,12,20)(11,21)(22,32)(23,33,24,31)', '(1,27,15,3,25,14)(2,26,13)(4,17,28,5,18,29,6,16,30)(7,9)(11,12)(19,21,20)(22,35,24,36,23,34)(31,32,33)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(444560786338266730682860657931103403143202252101101408531034813853989957234326231041847957608971529291570182174524509623113700290663713974637951784069988783237002608821535594553093545992080960519089309103382803854708391864997176013173133820407518626261387039671495671312723678849598183196146964680821099865143180774532179192835788156166065463374058323957174570239728229528859802705553742985498911564252804759662699987724111436410883345470180607986621756399958892066864324685984460023423966901373898487744134020625177565415840537241589769874489937083136207258887295349302519456659915783939657636355677885662368817907064802706981478487985206058066002493429563802450287871903550295363512261519552781631463359672329091328121278285002478943266845543463848875961844950244980668284468622019702502815059392951454219279405305491153887490100805074844011834101152189146971784509658865673859606265465014872212148131475234644906100782918255894243566221528646838567038086070642612809389101377375581368245667175499239149294432840714563415897507125759763341818873371543730616470513083435688563630412607609463254950705270958897726756645072431659016527640351608588394015262959986149429609435031758917643817392394896339875956973246891175863142681932655793883886300595517766183315116016049043873816952443606912065996961831801839132656998727018238354340907561470192134069757781384891272734258663812952662384314279040507611224724566529848234110657033474084778167180870126842884333240882119465000410644326927745976875686328208735051441566561578722334223078364677675087624188821325721445523370886230834606385702436733785203719364189157571520608367307878569648568052943996155870499090529154402796379725365101392078789233718176342815860936823713710548234940445165792469281335233652626140528744418273744024243425285335993295002117474029230573978172879801100605327756391240255810799552860444793431053062807408984147230716167929940649758949699122136804282944652787724376898576762862144836216194726146029151444189994879597081722407936770199728570670432454966546739822851641727355893998967076725425245960236307591072506758157908191628987187681258814647904449825921767333849797258767274130169027019000661855270252116647204649913028661661343663434802257811915332627742406341173824550684531818445470804135882094633455754886090139699483795593830455337332085776684869140858233935248469828942726359024342978219315766721556186290619903868240349984047510151200521414389340248363047984524499479383063677413637624061079517114640871083657042991749816846086064870235319339793455307822226833955700239994813181789964558317097242629127490753440872605462142242917257211044952073692691707219731380627125489756083286202752865696765668072477454411608377903744184952883622758940324669889527313850591468596147626972384605019055149383960916786174236334894974412831922794729720552929599023179663481679145367457497292112343647966803230902593396528580488983545593773607936619364622975853131456849988733171663436530413757114817677090301345690117535352820626556441417508268776297035513454805147407974361928506749171036389014302707177558283964429089038871797474555026592928450585605735773959450911195642496708584243379965860621716698860120611220663482331285683484994600319361266072660824766325035305983383184715471118331594022274067332885055773823030941780982658933268164508486483485803159648897548689588858207545930212254789773268197593598102576826722462480768453455488687805945170501935776374914790829280759142978959453915876322979223610013447214537829032985826128286967391586937945304551031617128012903316206285691573945674879905993938376887123167559416237043126894724925841978593716351699665241052608673697261891696454177646672776036309875180319308025496717087168605227780772920408043054304457425554206745949403041873533630612420920437264205070747891526483606368022332101629101990937556999311583961134819522361477295232324905255088109860032514475343881558825027707638997086377050472830057676899304726262711807874502965555711284269086088671246432321071582549930479952858467768075590294335784822508168151594330231730024462954933698184605605201094888387065809801517149039294917784152143878896661229190013012098737294697981867916404832994999367691326865516525863887617029942510103676953396269403125239751411945079144105516491617986602274559656256708198024357862887001619227274220707976155941289016346049329156582413726380322756857067337148282147940827205844778863805897671797198501518158545481549527916903776242006301150889105331816842097285095654133057369774123569796047489939606342434815454368317531731882130542679460736583215150508146713393259644117021157238330751,1410554953728)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18; l = G.20; m = G.22; n = G.24; o = G.26; p = G.27; q = G.28; r = G.29; s = G.30; t = G.31;
 

Group information

Description:$C_3^{12}.C_2^8.C_3^4.D_4^2.C_2$
Order: \(1410554953728\)\(\medspace = 2^{15} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2821109907456\)\(\medspace = 2^{16} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 15, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$6$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 16 18 24 36 48 72
Elements 1 35141391 96059600 12195026928 56986765488 69430286592 3390724800 430431553152 29386561536 144049326912 362797056000 223392287232 58773123072 19591041024 1410554953728
Conjugacy classes   1 28 120 69 1174 20 178 1376 1 469 146 339 2 3 3926
Divisions 1 28 120 69 1170 20 178 1245 1 467 131 258 1 2 3691
Autjugacy classes 1 28 120 69 1173 20 142 1245 1 370 133 247 1 2 3552

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t \mid h^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([31, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 35093049945200, 21358247333269, 156, 109964272218950, 10977694739776, 87458288486883, 61043752321362, 29244446498345, 344, 27170632558004, 83669802204395, 3553082564046, 13564999463168, 150215148573509, 42023079532356, 29731147842259, 23616300693002, 1231652019429, 4279548404032, 89625397013718, 131932838308301, 55046319169532, 32486656324319, 14338864997958, 6083215875555, 626, 73235172458503, 166450321148454, 6946513156677, 910731971428, 19761159137539, 10213622779522, 723875499584, 4510409493896, 169532161747239, 95246267545222, 42835023619733, 8018395256508, 8457253306219, 3551245914614, 418832661690, 820619297572, 274054832225289, 183495305925800, 98849985477831, 26197821124102, 9223057566133, 9206256733004, 4145018898435, 3191623678036, 214014439547, 908, 93758766697738, 53313959374761, 78169806906472, 5297757569735, 15840732820310, 7918641558597, 2516056797076, 1979630939711, 139200191384, 41539503015947, 253289224952106, 21555382760137, 63972186155048, 3755022701991, 14115006037318, 198444321269, 3417611204424, 1181379910543, 118731950066, 75925148613, 1096, 523706084498700, 109216220285995, 141617045786186, 60667641903961, 18866183688488, 16627404429959, 6651323094822, 2085624989365, 1044965278916, 261299680803, 165183506212, 455660709514765, 198656451673388, 111757685425419, 66984005006346, 20317429337545, 9954731419080, 8227599691783, 1590689310692, 1538802639495, 181542021484, 247143971159, 17375640846, 1284, 120063109397774, 207689227753005, 93502160835916, 73379928689147, 5030162182338, 4007336639209, 2606740150340, 497771299311, 38205066142, 4854893, 170280971064, 25124067535, 210179552219151, 66253234093102, 150213920408141, 415734819948, 8397550236811, 18834584652458, 9005906156745, 5091430462648, 1564732194743, 116635490502, 754741, 89636, 4466503234, 1654824593, 1472, 1573613584, 96881092927535, 31865674954, 126593933479, 1366310, 76245, 267845268734225, 367137559978032, 38604327736399, 66673205606126, 7692800843661, 20072251180, 7373155887131, 1211142964266, 45848128297, 2410856, 67021402647, 22628047606, 13088859077, 4362953316, 1885671055, 17222, 1660, 162993412325394, 249017127026737, 54991546030160, 439686255, 5093544135341, 7783763807436, 27480619, 509193, 95471434408, 14619, 169167778283539, 19722036280370, 73516911759441, 94346001469552, 32699111408783, 14471922309294, 2680675501885, 18961465196, 454080401578, 200997448169, 84376028520, 33413174311, 11137725062, 9099730533, 689532244, 1848, 243109180016660, 4239655644723, 60777699978322, 60481258951793, 24722513408047, 3798940352462, 182238573, 1095117707, 343367679642, 44489777833, 17495724344, 5831908407, 5833455214, 977094197, 612337470750741, 26039463082036, 224056392544595, 27219326137458, 20292117221521, 25734951500720, 598397032935, 6434740186222, 1512184785677, 220078825068, 221168639275, 46411235210, 13471535481, 21609345016, 10820140511, 3330577494, 35965198, 14218295, 2036, 899573413330966, 110374088749109, 132482792201556, 15175558987891, 42601421906066, 129736339377, 2457439124752, 2663487044015, 1775059246350, 292206155053, 260470650572, 125544857835, 38322119050, 16233675689, 7235296296, 2423162359, 96734747, 124511021641751, 243787397179446, 228114373174357, 107873209565684, 55119078153363, 17109090376882, 5107721080673, 6169575854256, 1479957714415, 5320588334, 425029136013, 42161176876, 11870321003, 18848570826, 7696235545, 2841568616, 135848998, 39257028, 15521971, 5174450, 2224, 899431693401624, 119979045849655, 141959072966486, 51871972838517, 43117590297748, 23170808937779, 15675136459410, 3820714080541, 1995763278872, 326018196303, 159760199134, 151648329965, 35688341196, 25673134027, 8171798858, 1508609289, 197644151, 105192913, 170770025447480, 779771805783, 12535123, 850243081264, 96794590799, 43546284654, 70853590477, 23617863788, 3628857483, 348806, 58708, 10410, 222595692392474, 154455257016633, 1219643080792, 89156409053303, 38870499843222, 2967881653, 3796232811476, 235572219, 39262270, 268545544433, 478733781288, 58602642415, 22844877518, 312770589, 7382822572, 1236617771, 4128761, 688753, 327519709397019, 500773452447802, 7557788270681, 102253708343928, 17378247721142, 3753147158421, 2489375670004, 380513645843, 369012382002, 323736279889, 131225101424, 30575543439, 10191848110, 10935425549, 2062984, 6281526, 94484, 845392602267676, 30199495680059, 23483127840858, 83088879114361, 20843691918488, 27508720615095, 163342920598, 2187953462261, 868487163540, 777720901555, 432649719698, 62258497713, 63425931952, 21141977615, 5188208574, 192242715, 5437769, 2816347, 292017, 882542656512029, 149373461629500, 75583436636251, 43289415014522, 43158203412633, 22662291663544, 5623882280855, 267371079366, 40917080077, 431331143348, 173394192579, 37344395890, 34379407121, 17404645392, 4131700303, 245877614, 68701516, 16673658, 2779520, 329962, 100410615595038, 103879878119485, 65550169306460, 76960811335803, 931880070298, 39691526937017, 4852563103800, 72769503415, 38828336534, 1015455149877, 155806545940, 38499536243, 84352244370, 94655089, 15202036400, 5081460975, 50856739, 13320141, 2220653]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t := Explode([G.1, G.2, G.4, G.6, G.7, G.9, G.10, G.12, G.14, G.16, G.18, G.20, G.22, G.24, G.26, G.27, G.28, G.29, G.30, G.31]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "e", "e2", "f", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "m2", "n", "n2", "o", "p", "q", "r", "s", "t"]);
 
Copy content gap:G := PcGroupCode(444560786338266730682860657931103403143202252101101408531034813853989957234326231041847957608971529291570182174524509623113700290663713974637951784069988783237002608821535594553093545992080960519089309103382803854708391864997176013173133820407518626261387039671495671312723678849598183196146964680821099865143180774532179192835788156166065463374058323957174570239728229528859802705553742985498911564252804759662699987724111436410883345470180607986621756399958892066864324685984460023423966901373898487744134020625177565415840537241589769874489937083136207258887295349302519456659915783939657636355677885662368817907064802706981478487985206058066002493429563802450287871903550295363512261519552781631463359672329091328121278285002478943266845543463848875961844950244980668284468622019702502815059392951454219279405305491153887490100805074844011834101152189146971784509658865673859606265465014872212148131475234644906100782918255894243566221528646838567038086070642612809389101377375581368245667175499239149294432840714563415897507125759763341818873371543730616470513083435688563630412607609463254950705270958897726756645072431659016527640351608588394015262959986149429609435031758917643817392394896339875956973246891175863142681932655793883886300595517766183315116016049043873816952443606912065996961831801839132656998727018238354340907561470192134069757781384891272734258663812952662384314279040507611224724566529848234110657033474084778167180870126842884333240882119465000410644326927745976875686328208735051441566561578722334223078364677675087624188821325721445523370886230834606385702436733785203719364189157571520608367307878569648568052943996155870499090529154402796379725365101392078789233718176342815860936823713710548234940445165792469281335233652626140528744418273744024243425285335993295002117474029230573978172879801100605327756391240255810799552860444793431053062807408984147230716167929940649758949699122136804282944652787724376898576762862144836216194726146029151444189994879597081722407936770199728570670432454966546739822851641727355893998967076725425245960236307591072506758157908191628987187681258814647904449825921767333849797258767274130169027019000661855270252116647204649913028661661343663434802257811915332627742406341173824550684531818445470804135882094633455754886090139699483795593830455337332085776684869140858233935248469828942726359024342978219315766721556186290619903868240349984047510151200521414389340248363047984524499479383063677413637624061079517114640871083657042991749816846086064870235319339793455307822226833955700239994813181789964558317097242629127490753440872605462142242917257211044952073692691707219731380627125489756083286202752865696765668072477454411608377903744184952883622758940324669889527313850591468596147626972384605019055149383960916786174236334894974412831922794729720552929599023179663481679145367457497292112343647966803230902593396528580488983545593773607936619364622975853131456849988733171663436530413757114817677090301345690117535352820626556441417508268776297035513454805147407974361928506749171036389014302707177558283964429089038871797474555026592928450585605735773959450911195642496708584243379965860621716698860120611220663482331285683484994600319361266072660824766325035305983383184715471118331594022274067332885055773823030941780982658933268164508486483485803159648897548689588858207545930212254789773268197593598102576826722462480768453455488687805945170501935776374914790829280759142978959453915876322979223610013447214537829032985826128286967391586937945304551031617128012903316206285691573945674879905993938376887123167559416237043126894724925841978593716351699665241052608673697261891696454177646672776036309875180319308025496717087168605227780772920408043054304457425554206745949403041873533630612420920437264205070747891526483606368022332101629101990937556999311583961134819522361477295232324905255088109860032514475343881558825027707638997086377050472830057676899304726262711807874502965555711284269086088671246432321071582549930479952858467768075590294335784822508168151594330231730024462954933698184605605201094888387065809801517149039294917784152143878896661229190013012098737294697981867916404832994999367691326865516525863887617029942510103676953396269403125239751411945079144105516491617986602274559656256708198024357862887001619227274220707976155941289016346049329156582413726380322756857067337148282147940827205844778863805897671797198501518158545481549527916903776242006301150889105331816842097285095654133057369774123569796047489939606342434815454368317531731882130542679460736583215150508146713393259644117021157238330751,1410554953728); a := G.1; b := G.2; c := G.4; d := G.6; e := G.7; f := G.9; g := G.10; h := G.12; i := G.14; j := G.16; k := G.18; l := G.20; m := G.22; n := G.24; o := G.26; p := G.27; q := G.28; r := G.29; s := G.30; t := G.31;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(444560786338266730682860657931103403143202252101101408531034813853989957234326231041847957608971529291570182174524509623113700290663713974637951784069988783237002608821535594553093545992080960519089309103382803854708391864997176013173133820407518626261387039671495671312723678849598183196146964680821099865143180774532179192835788156166065463374058323957174570239728229528859802705553742985498911564252804759662699987724111436410883345470180607986621756399958892066864324685984460023423966901373898487744134020625177565415840537241589769874489937083136207258887295349302519456659915783939657636355677885662368817907064802706981478487985206058066002493429563802450287871903550295363512261519552781631463359672329091328121278285002478943266845543463848875961844950244980668284468622019702502815059392951454219279405305491153887490100805074844011834101152189146971784509658865673859606265465014872212148131475234644906100782918255894243566221528646838567038086070642612809389101377375581368245667175499239149294432840714563415897507125759763341818873371543730616470513083435688563630412607609463254950705270958897726756645072431659016527640351608588394015262959986149429609435031758917643817392394896339875956973246891175863142681932655793883886300595517766183315116016049043873816952443606912065996961831801839132656998727018238354340907561470192134069757781384891272734258663812952662384314279040507611224724566529848234110657033474084778167180870126842884333240882119465000410644326927745976875686328208735051441566561578722334223078364677675087624188821325721445523370886230834606385702436733785203719364189157571520608367307878569648568052943996155870499090529154402796379725365101392078789233718176342815860936823713710548234940445165792469281335233652626140528744418273744024243425285335993295002117474029230573978172879801100605327756391240255810799552860444793431053062807408984147230716167929940649758949699122136804282944652787724376898576762862144836216194726146029151444189994879597081722407936770199728570670432454966546739822851641727355893998967076725425245960236307591072506758157908191628987187681258814647904449825921767333849797258767274130169027019000661855270252116647204649913028661661343663434802257811915332627742406341173824550684531818445470804135882094633455754886090139699483795593830455337332085776684869140858233935248469828942726359024342978219315766721556186290619903868240349984047510151200521414389340248363047984524499479383063677413637624061079517114640871083657042991749816846086064870235319339793455307822226833955700239994813181789964558317097242629127490753440872605462142242917257211044952073692691707219731380627125489756083286202752865696765668072477454411608377903744184952883622758940324669889527313850591468596147626972384605019055149383960916786174236334894974412831922794729720552929599023179663481679145367457497292112343647966803230902593396528580488983545593773607936619364622975853131456849988733171663436530413757114817677090301345690117535352820626556441417508268776297035513454805147407974361928506749171036389014302707177558283964429089038871797474555026592928450585605735773959450911195642496708584243379965860621716698860120611220663482331285683484994600319361266072660824766325035305983383184715471118331594022274067332885055773823030941780982658933268164508486483485803159648897548689588858207545930212254789773268197593598102576826722462480768453455488687805945170501935776374914790829280759142978959453915876322979223610013447214537829032985826128286967391586937945304551031617128012903316206285691573945674879905993938376887123167559416237043126894724925841978593716351699665241052608673697261891696454177646672776036309875180319308025496717087168605227780772920408043054304457425554206745949403041873533630612420920437264205070747891526483606368022332101629101990937556999311583961134819522361477295232324905255088109860032514475343881558825027707638997086377050472830057676899304726262711807874502965555711284269086088671246432321071582549930479952858467768075590294335784822508168151594330231730024462954933698184605605201094888387065809801517149039294917784152143878896661229190013012098737294697981867916404832994999367691326865516525863887617029942510103676953396269403125239751411945079144105516491617986602274559656256708198024357862887001619227274220707976155941289016346049329156582413726380322756857067337148282147940827205844778863805897671797198501518158545481549527916903776242006301150889105331816842097285095654133057369774123569796047489939606342434815454368317531731882130542679460736583215150508146713393259644117021157238330751,1410554953728)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18; l = G.20; m = G.22; n = G.24; o = G.26; p = G.27; q = G.28; r = G.29; s = G.30; t = G.31;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(444560786338266730682860657931103403143202252101101408531034813853989957234326231041847957608971529291570182174524509623113700290663713974637951784069988783237002608821535594553093545992080960519089309103382803854708391864997176013173133820407518626261387039671495671312723678849598183196146964680821099865143180774532179192835788156166065463374058323957174570239728229528859802705553742985498911564252804759662699987724111436410883345470180607986621756399958892066864324685984460023423966901373898487744134020625177565415840537241589769874489937083136207258887295349302519456659915783939657636355677885662368817907064802706981478487985206058066002493429563802450287871903550295363512261519552781631463359672329091328121278285002478943266845543463848875961844950244980668284468622019702502815059392951454219279405305491153887490100805074844011834101152189146971784509658865673859606265465014872212148131475234644906100782918255894243566221528646838567038086070642612809389101377375581368245667175499239149294432840714563415897507125759763341818873371543730616470513083435688563630412607609463254950705270958897726756645072431659016527640351608588394015262959986149429609435031758917643817392394896339875956973246891175863142681932655793883886300595517766183315116016049043873816952443606912065996961831801839132656998727018238354340907561470192134069757781384891272734258663812952662384314279040507611224724566529848234110657033474084778167180870126842884333240882119465000410644326927745976875686328208735051441566561578722334223078364677675087624188821325721445523370886230834606385702436733785203719364189157571520608367307878569648568052943996155870499090529154402796379725365101392078789233718176342815860936823713710548234940445165792469281335233652626140528744418273744024243425285335993295002117474029230573978172879801100605327756391240255810799552860444793431053062807408984147230716167929940649758949699122136804282944652787724376898576762862144836216194726146029151444189994879597081722407936770199728570670432454966546739822851641727355893998967076725425245960236307591072506758157908191628987187681258814647904449825921767333849797258767274130169027019000661855270252116647204649913028661661343663434802257811915332627742406341173824550684531818445470804135882094633455754886090139699483795593830455337332085776684869140858233935248469828942726359024342978219315766721556186290619903868240349984047510151200521414389340248363047984524499479383063677413637624061079517114640871083657042991749816846086064870235319339793455307822226833955700239994813181789964558317097242629127490753440872605462142242917257211044952073692691707219731380627125489756083286202752865696765668072477454411608377903744184952883622758940324669889527313850591468596147626972384605019055149383960916786174236334894974412831922794729720552929599023179663481679145367457497292112343647966803230902593396528580488983545593773607936619364622975853131456849988733171663436530413757114817677090301345690117535352820626556441417508268776297035513454805147407974361928506749171036389014302707177558283964429089038871797474555026592928450585605735773959450911195642496708584243379965860621716698860120611220663482331285683484994600319361266072660824766325035305983383184715471118331594022274067332885055773823030941780982658933268164508486483485803159648897548689588858207545930212254789773268197593598102576826722462480768453455488687805945170501935776374914790829280759142978959453915876322979223610013447214537829032985826128286967391586937945304551031617128012903316206285691573945674879905993938376887123167559416237043126894724925841978593716351699665241052608673697261891696454177646672776036309875180319308025496717087168605227780772920408043054304457425554206745949403041873533630612420920437264205070747891526483606368022332101629101990937556999311583961134819522361477295232324905255088109860032514475343881558825027707638997086377050472830057676899304726262711807874502965555711284269086088671246432321071582549930479952858467768075590294335784822508168151594330231730024462954933698184605605201094888387065809801517149039294917784152143878896661229190013012098737294697981867916404832994999367691326865516525863887617029942510103676953396269403125239751411945079144105516491617986602274559656256708198024357862887001619227274220707976155941289016346049329156582413726380322756857067337148282147940827205844778863805897671797198501518158545481549527916903776242006301150889105331816842097285095654133057369774123569796047489939606342434815454368317531731882130542679460736583215150508146713393259644117021157238330751,1410554953728)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.9; g = G.10; h = G.12; i = G.14; j = G.16; k = G.18; l = G.20; m = G.22; n = G.24; o = G.26; p = G.27; q = G.28; r = G.29; s = G.30; t = G.31;
 
Permutation group:Degree $36$ $\langle(1,14,27,2,13,26)(3,15,25)(4,23,16,11,5,22,18,10)(6,24,17,12)(7,8,9)(28,35,29,36,30,34) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,14,27,2,13,26)(3,15,25)(4,23,16,11,5,22,18,10)(6,24,17,12)(7,8,9)(28,35,29,36,30,34)(31,32), (1,30,14,17,2,29,15,18,3,28,13,16)(4,25)(5,27)(6,26)(7,36,8,35)(9,34)(10,19,12,20)(11,21)(22,32)(23,33,24,31), (1,27,15,3,25,14)(2,26,13)(4,17,28,5,18,29,6,16,30)(7,9)(11,12)(19,21,20)(22,35,24,36,23,34)(31,32,33) >;
 
Copy content gap:G := Group( (1,14,27,2,13,26)(3,15,25)(4,23,16,11,5,22,18,10)(6,24,17,12)(7,8,9)(28,35,29,36,30,34)(31,32), (1,30,14,17,2,29,15,18,3,28,13,16)(4,25)(5,27)(6,26)(7,36,8,35)(9,34)(10,19,12,20)(11,21)(22,32)(23,33,24,31), (1,27,15,3,25,14)(2,26,13)(4,17,28,5,18,29,6,16,30)(7,9)(11,12)(19,21,20)(22,35,24,36,23,34)(31,32,33) );
 
Copy content sage:G = PermutationGroup(['(1,14,27,2,13,26)(3,15,25)(4,23,16,11,5,22,18,10)(6,24,17,12)(7,8,9)(28,35,29,36,30,34)(31,32)', '(1,30,14,17,2,29,15,18,3,28,13,16)(4,25)(5,27)(6,26)(7,36,8,35)(9,34)(10,19,12,20)(11,21)(22,32)(23,33,24,31)', '(1,27,15,3,25,14)(2,26,13)(4,17,28,5,18,29,6,16,30)(7,9)(11,12)(19,21,20)(22,35,24,36,23,34)(31,32,33)'])
 
Transitive group: 36T119644 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(C_2^8.S_3\wr D_4)$ $(C_3^{12}.C_2^6.C_6^2.D_6^2)$ . $D_4$ (6) $(C_3^9.C_6^3.C_2^5)$ . $(S_3\wr D_4)$ $(C_3^{12}.C_2^8.C_3^4.D_4:D_4)$ . $C_2$ all 20

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 31 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4^4.C_2\wr D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3926 \times 3926$ character table is not available for this group.

Rational character table

The $3691 \times 3691$ rational character table is not available for this group.