Properties

Label 141...728.ge
Order \( 2^{15} \cdot 3^{16} \)
Exponent \( 2^{4} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{17} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,16,19,11,3,17,20,12,2,18,21,10)(4,8,24,25,30,33,36,14,6,7,22,27,28,32,34,15,5,9,23,26,29,31,35,13), (1,20,2,19)(3,21)(4,18,30,5,16,28)(6,17,29)(7,15,8,13,9,14)(10,22,11,24,12,23)(25,33,26,32)(27,31)(34,35), (1,9,2,8,3,7)(10,36,22,12,34,24)(11,35,23)(13,32,26,20,14,31,27,19)(15,33,25,21)(16,18)(28,30) >;
 
Copy content gap:G := Group( (1,16,19,11,3,17,20,12,2,18,21,10)(4,8,24,25,30,33,36,14,6,7,22,27,28,32,34,15,5,9,23,26,29,31,35,13), (1,20,2,19)(3,21)(4,18,30,5,16,28)(6,17,29)(7,15,8,13,9,14)(10,22,11,24,12,23)(25,33,26,32)(27,31)(34,35), (1,9,2,8,3,7)(10,36,22,12,34,24)(11,35,23)(13,32,26,20,14,31,27,19)(15,33,25,21)(16,18)(28,30) );
 
Copy content sage:G = PermutationGroup(['(1,16,19,11,3,17,20,12,2,18,21,10)(4,8,24,25,30,33,36,14,6,7,22,27,28,32,34,15,5,9,23,26,29,31,35,13)', '(1,20,2,19)(3,21)(4,18,30,5,16,28)(6,17,29)(7,15,8,13,9,14)(10,22,11,24,12,23)(25,33,26,32)(27,31)(34,35)', '(1,9,2,8,3,7)(10,36,22,12,34,24)(11,35,23)(13,32,26,20,14,31,27,19)(15,33,25,21)(16,18)(28,30)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2135508794645372382120316986484679816988295821036429883816470913853963206478101451473993103669486903399083481959582966948112648928044488217846731023719321981371079242462076316088033443335510327625254377047244145879882226950504733540399727065728355449159193044925913501101871324263371508297713447088373443880364899969404632377995170682010511833344301130667451732281784221566227985072568320187278660303470269901561024627614707838328383346846827519224705047368381531359375993280955786085530889335082002186384132187549898117306545653755751559617171737060105476847997655232421945451876935914951630183676227105967806248575805851690115766595912464605720430876938926309348571938571048861473764013501670845050163826145319468824465636289708760546059623651436564839797918158553193967295011385118252049443055344419409141760206318788249792718666115815920020934617534693992599020425908684488512736001702006904460516071849212988853455921750234006420904617205244519651122140696897155028342435444063176868626633505233968898228330058114775687676895386441165889193285874497630866146647473721934870889512856673999451093346088657016467343465825891316021774541497173447755432290332532272170479181558335461815662709203655845028521750311554436647473345134268099547552871594653453651900669702253966799713485776369084762609120586533717865791001748496732642628261220400919571701325166507306773874442477626084946082183121102900137333503268044263054564995645624773202485507436275029500678692235152644789387525917056646888326099262687939525433172424208102129490956019265393045839295111998238517359574525504491821165844649262256609414104842395444887402025415321201273386601855959481580327771835831562514651743384179486212980394667327227892082195406099618145876892045845005856727377432597861549858582738556101462675149918977209716798615406260052567543536162442156818117876666581600933118852673147908970998141795247342459118643394415254108752205504238918083228171890098462529393729129982248818191572888008737451585672930078937906610722454670454282493676421777612946502052796579370519277021702861970860989503085942613744969552927958656468283439760522581278636184726323355356990313303887169874593898075480607768573520834070830627038144615761493192812170827361844702354453076948016741862144456406979669599670054210198911284154951933914621769616427422598088953948363800996307190861329982887233000351782114542694727653931474480126734199557969734964949191314575452254170895011772399379927130992710446984212812688559685181134682383445397600115468365233485087240844749784083938471199644471769656770017305041651810530227695759633490649799137621599445823411417405021835045414255589050703262855630541380064884481141037395395921932410114223828466815983743750975741550138856979365283386735462904458732874935622270638616253498339243195366297573117670156860704878921325806636618829848959886022170364337256647596973155551818491006252282672861290767260657236127245343724614923778958797791825146510866008651554179162771339259851288954495508560954363105606845156110432565831615038848139604290353685112120870420870511723158251026398632790344904411037291664292403770393547956400584915014743980575982357207773300370936240327760213783940875954647344464382023174535631951960019284126352442362019856397169745000135013352595218421892520936027964348741900773391471067767058339578685659253132114715038638808449043924265336490715303136042997584770992859523936233689841333993360836117287382950790678759228919042684999721920914145536096494103433025856206876989904182934138505989551405950047215918917925029660356263336616300063212311663537995548917318057370945279989097652361266434163471290922458491604547845016374805684217644103603533590345385065429954305793815932117808096356664568608767209560659415481395587888801533381159668257077076553838953382008326921365147866445528549476815237933339886795806424391299718308244736181540356691858508780455036970225663364868506893562465356009094231379125450236373754119943845268509906804735113607402893527691853894056043874144708443738827156778751304533711945577939443070870711915432861978933951120693838346738185657663231786410323979250072968825996838819599778266875866498365131963783701905942830502964914648649726273365433038746319414066931682485235869876476190507879584577620093737312272336832519178523376317631490094674568527071780496933949463482202924019420089172455723512497870445187944559415097098727937407,1410554953728)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.26; o = G.27; p = G.28; q = G.29; r = G.30; s = G.31;
 

Group information

Description:$C_3^{12}.C_2^8.C_3^4.C_2.C_2\wr C_2^2$
Order: \(1410554953728\)\(\medspace = 2^{15} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(5642219814912\)\(\medspace = 2^{17} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 15, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 16 18 24 36 72
Elements 1 33483807 96059600 9052920288 55900976688 103266150912 3390724800 530908141824 176319369216 63175816512 339981152256 108839116800 19591041024 1410554953728
Conjugacy classes   1 29 120 72 1203 22 156 1223 4 316 143 325 21 3635
Divisions 1 29 120 69 1198 18 156 1180 2 316 126 220 11 3446
Autjugacy classes 1 29 119 64 1177 13 126 1119 1 280 111 235 10 3285

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid i^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([31, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 1138591196928, 33364039159445, 156, 79331724386270, 250, 147577100477923, 5515309265568, 90782410945204, 16465570627635, 11732897693006, 23523500791367, 11754445230728, 177171816897029, 105825853656852, 1576752204235, 7943410896554, 12908700207477, 532, 205510119204998, 52208271206821, 35171931456548, 17401712410195, 9415640471682, 4031156356860, 91286287708423, 22648838861734, 73076280226533, 12685834120228, 2262526460003, 7892982672594, 3596425015897, 720, 127290642877448, 4682238969351, 4784903987686, 23675689426853, 1442737522860, 1674712159939, 457350970604, 910693779088, 431900050556169, 118531015077160, 88166277274951, 23270467202022, 24134054696773, 9593153086124, 6258112792395, 1454103146326, 407370981347, 908, 3308199333130, 192598282700777, 96832276414616, 53372193728935, 24276488553638, 9706876805109, 7152227713816, 1555928502971, 805446039744, 55015729088, 45107121530891, 120819643905066, 73369375916617, 19976682428456, 28992361236327, 4933090873750, 3216982213997, 215693601204, 682713265867, 37905638906, 1096, 233965656322956, 121937719093675, 39332788561322, 70435567478121, 1608308597512, 16942850365127, 335486996406, 134361779989, 1369259744840, 20532224835, 1711015872, 122507305197325, 197960483218220, 17854764638667, 26579098516426, 15366916110809, 14676307484496, 4119270748435, 2273263173950, 53861037309, 372365245516, 774521063, 1284, 600741211887374, 177754232643885, 80774816330956, 6157582675307, 3205314400458, 19734536373289, 811872389720, 3148505737431, 1643763676582, 658083328, 388128392478735, 14422470902830, 90026216239181, 44118326675052, 39994670820235, 11209341520682, 89980205385, 3249518178472, 1677274263911, 833196966, 833143429, 8423550500, 1403925442, 1472, 704957110142992, 98089628147759, 169105759395918, 7647768315181, 3187436, 22349049997995, 47800105978, 290333069513, 17703835896, 4475039829, 745840331, 66630084544529, 318544668050736, 17668283889679, 88657245716078, 24163091856141, 12175906335148, 6194709276827, 2480396816106, 203438006185, 391897756520, 58938519, 4249114558, 54590415977, 17571948288, 8702468569, 28930550, 7233867, 1660, 30774512590866, 32512445356081, 88330015088720, 54944067051183, 50193474546094, 24812150416445, 5959736780316, 2330832737035, 2091395387930, 330764588937, 64086079391, 2280999486, 1502346229, 453447992, 752373342167059, 74808554089010, 43888254900561, 38055182883952, 260861161103, 3179368471854, 8853929026765, 2972697771116, 422807403147, 326753818858, 265283333609, 116058018600, 1757164742, 312082506, 1848, 628991485968404, 399967952412723, 183282876645202, 109975733102705, 31023525367440, 12084590505631, 7236324908270, 4071994125933, 2282018816716, 796523269547, 353729672682, 60931725481, 921878919, 586939543, 14516261185557, 22247779479604, 236650958083667, 4983362258802, 57575026105489, 29908494323312, 14403835318959, 21573548014, 12695937677, 289906480812, 399826570507, 128150465618, 66374184093, 23077542340, 10679205893, 35502678, 8912893, 3069548, 1003150, 248207, 2036, 543560931016726, 465168069623861, 20924054203476, 120369774698611, 33972558188690, 4790265009, 798377711, 605968501549, 235920543308, 3696617, 103221, 17723, 304254403614743, 509941084681782, 99537223424341, 110512024849268, 5535204045843, 20297593531762, 11999361741905, 1688333645328, 305932647007, 493970027054, 279902174733, 75907168780, 5649388811, 13696802346, 6325597825, 348085352, 87262791, 354674278, 13097957, 107377668, 26851603, 183698, 2224, 604323149414424, 295413549465655, 151080787353686, 10122037862517, 140583859379, 1265254733010, 23430643441, 2603405072, 5857661165, 325425996, 108475627, 488138858, 670151, 19275, 4678630834201, 521421854294072, 1169657708631, 389885902966, 32914096720277, 16457048360244, 48735738067, 3273417059570, 1371420696945, 75209900, 12535402, 10410, 1619526058010, 409740092670009, 809763029080, 1214644543607, 2732950223029, 16870063316, 5623354611, 25305094930, 78102511, 3163137230, 1054379373, 6508972, 6509065, 181469, 30871, 850950975651867, 604063267476538, 14135905244249, 141596217262200, 215770189975, 11021774561462, 17844777861333, 5166931545460, 1718871985427, 587698385202, 458511653713, 27538237870, 2598584172, 764951594, 94484, 1173032523399196, 96638386235, 146847508443738, 72478789753, 18119697591, 81538638550, 489231830261, 754987761, 41944144, 13981679, 62916078, 292017, 304847825633309, 136859948974140, 315067658307931, 58345425653882, 60294855168153, 23524365772984, 5501515023575, 3923851714806, 1012203786517, 521809102388, 418670882259, 35232745330, 11368201361, 20494581552, 2936062543, 565276876, 117917178, 2813000, 904702, 482425488506910, 630364232821309, 335640411746012, 19927515200379, 19694545182874, 6819200400569, 4648639611096, 3993509827831, 529528036886, 619908287925, 351158810452, 28515961009, 1509493167, 793356029, 102958315, 2803019]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.2, G.5, G.6, G.8, G.10, G.12, G.14, G.16, G.18, G.20, G.22, G.24, G.26, G.27, G.28, G.29, G.30, G.31]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "m2", "n", "o", "p", "q", "r", "s"]);
 
Copy content gap:G := PcGroupCode(2135508794645372382120316986484679816988295821036429883816470913853963206478101451473993103669486903399083481959582966948112648928044488217846731023719321981371079242462076316088033443335510327625254377047244145879882226950504733540399727065728355449159193044925913501101871324263371508297713447088373443880364899969404632377995170682010511833344301130667451732281784221566227985072568320187278660303470269901561024627614707838328383346846827519224705047368381531359375993280955786085530889335082002186384132187549898117306545653755751559617171737060105476847997655232421945451876935914951630183676227105967806248575805851690115766595912464605720430876938926309348571938571048861473764013501670845050163826145319468824465636289708760546059623651436564839797918158553193967295011385118252049443055344419409141760206318788249792718666115815920020934617534693992599020425908684488512736001702006904460516071849212988853455921750234006420904617205244519651122140696897155028342435444063176868626633505233968898228330058114775687676895386441165889193285874497630866146647473721934870889512856673999451093346088657016467343465825891316021774541497173447755432290332532272170479181558335461815662709203655845028521750311554436647473345134268099547552871594653453651900669702253966799713485776369084762609120586533717865791001748496732642628261220400919571701325166507306773874442477626084946082183121102900137333503268044263054564995645624773202485507436275029500678692235152644789387525917056646888326099262687939525433172424208102129490956019265393045839295111998238517359574525504491821165844649262256609414104842395444887402025415321201273386601855959481580327771835831562514651743384179486212980394667327227892082195406099618145876892045845005856727377432597861549858582738556101462675149918977209716798615406260052567543536162442156818117876666581600933118852673147908970998141795247342459118643394415254108752205504238918083228171890098462529393729129982248818191572888008737451585672930078937906610722454670454282493676421777612946502052796579370519277021702861970860989503085942613744969552927958656468283439760522581278636184726323355356990313303887169874593898075480607768573520834070830627038144615761493192812170827361844702354453076948016741862144456406979669599670054210198911284154951933914621769616427422598088953948363800996307190861329982887233000351782114542694727653931474480126734199557969734964949191314575452254170895011772399379927130992710446984212812688559685181134682383445397600115468365233485087240844749784083938471199644471769656770017305041651810530227695759633490649799137621599445823411417405021835045414255589050703262855630541380064884481141037395395921932410114223828466815983743750975741550138856979365283386735462904458732874935622270638616253498339243195366297573117670156860704878921325806636618829848959886022170364337256647596973155551818491006252282672861290767260657236127245343724614923778958797791825146510866008651554179162771339259851288954495508560954363105606845156110432565831615038848139604290353685112120870420870511723158251026398632790344904411037291664292403770393547956400584915014743980575982357207773300370936240327760213783940875954647344464382023174535631951960019284126352442362019856397169745000135013352595218421892520936027964348741900773391471067767058339578685659253132114715038638808449043924265336490715303136042997584770992859523936233689841333993360836117287382950790678759228919042684999721920914145536096494103433025856206876989904182934138505989551405950047215918917925029660356263336616300063212311663537995548917318057370945279989097652361266434163471290922458491604547845016374805684217644103603533590345385065429954305793815932117808096356664568608767209560659415481395587888801533381159668257077076553838953382008326921365147866445528549476815237933339886795806424391299718308244736181540356691858508780455036970225663364868506893562465356009094231379125450236373754119943845268509906804735113607402893527691853894056043874144708443738827156778751304533711945577939443070870711915432861978933951120693838346738185657663231786410323979250072968825996838819599778266875866498365131963783701905942830502964914648649726273365433038746319414066931682485235869876476190507879584577620093737312272336832519178523376317631490094674568527071780496933949463482202924019420089172455723512497870445187944559415097098727937407,1410554953728); a := G.1; b := G.2; c := G.5; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.18; k := G.20; l := G.22; m := G.24; n := G.26; o := G.27; p := G.28; q := G.29; r := G.30; s := G.31;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2135508794645372382120316986484679816988295821036429883816470913853963206478101451473993103669486903399083481959582966948112648928044488217846731023719321981371079242462076316088033443335510327625254377047244145879882226950504733540399727065728355449159193044925913501101871324263371508297713447088373443880364899969404632377995170682010511833344301130667451732281784221566227985072568320187278660303470269901561024627614707838328383346846827519224705047368381531359375993280955786085530889335082002186384132187549898117306545653755751559617171737060105476847997655232421945451876935914951630183676227105967806248575805851690115766595912464605720430876938926309348571938571048861473764013501670845050163826145319468824465636289708760546059623651436564839797918158553193967295011385118252049443055344419409141760206318788249792718666115815920020934617534693992599020425908684488512736001702006904460516071849212988853455921750234006420904617205244519651122140696897155028342435444063176868626633505233968898228330058114775687676895386441165889193285874497630866146647473721934870889512856673999451093346088657016467343465825891316021774541497173447755432290332532272170479181558335461815662709203655845028521750311554436647473345134268099547552871594653453651900669702253966799713485776369084762609120586533717865791001748496732642628261220400919571701325166507306773874442477626084946082183121102900137333503268044263054564995645624773202485507436275029500678692235152644789387525917056646888326099262687939525433172424208102129490956019265393045839295111998238517359574525504491821165844649262256609414104842395444887402025415321201273386601855959481580327771835831562514651743384179486212980394667327227892082195406099618145876892045845005856727377432597861549858582738556101462675149918977209716798615406260052567543536162442156818117876666581600933118852673147908970998141795247342459118643394415254108752205504238918083228171890098462529393729129982248818191572888008737451585672930078937906610722454670454282493676421777612946502052796579370519277021702861970860989503085942613744969552927958656468283439760522581278636184726323355356990313303887169874593898075480607768573520834070830627038144615761493192812170827361844702354453076948016741862144456406979669599670054210198911284154951933914621769616427422598088953948363800996307190861329982887233000351782114542694727653931474480126734199557969734964949191314575452254170895011772399379927130992710446984212812688559685181134682383445397600115468365233485087240844749784083938471199644471769656770017305041651810530227695759633490649799137621599445823411417405021835045414255589050703262855630541380064884481141037395395921932410114223828466815983743750975741550138856979365283386735462904458732874935622270638616253498339243195366297573117670156860704878921325806636618829848959886022170364337256647596973155551818491006252282672861290767260657236127245343724614923778958797791825146510866008651554179162771339259851288954495508560954363105606845156110432565831615038848139604290353685112120870420870511723158251026398632790344904411037291664292403770393547956400584915014743980575982357207773300370936240327760213783940875954647344464382023174535631951960019284126352442362019856397169745000135013352595218421892520936027964348741900773391471067767058339578685659253132114715038638808449043924265336490715303136042997584770992859523936233689841333993360836117287382950790678759228919042684999721920914145536096494103433025856206876989904182934138505989551405950047215918917925029660356263336616300063212311663537995548917318057370945279989097652361266434163471290922458491604547845016374805684217644103603533590345385065429954305793815932117808096356664568608767209560659415481395587888801533381159668257077076553838953382008326921365147866445528549476815237933339886795806424391299718308244736181540356691858508780455036970225663364868506893562465356009094231379125450236373754119943845268509906804735113607402893527691853894056043874144708443738827156778751304533711945577939443070870711915432861978933951120693838346738185657663231786410323979250072968825996838819599778266875866498365131963783701905942830502964914648649726273365433038746319414066931682485235869876476190507879584577620093737312272336832519178523376317631490094674568527071780496933949463482202924019420089172455723512497870445187944559415097098727937407,1410554953728)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.26; o = G.27; p = G.28; q = G.29; r = G.30; s = G.31;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2135508794645372382120316986484679816988295821036429883816470913853963206478101451473993103669486903399083481959582966948112648928044488217846731023719321981371079242462076316088033443335510327625254377047244145879882226950504733540399727065728355449159193044925913501101871324263371508297713447088373443880364899969404632377995170682010511833344301130667451732281784221566227985072568320187278660303470269901561024627614707838328383346846827519224705047368381531359375993280955786085530889335082002186384132187549898117306545653755751559617171737060105476847997655232421945451876935914951630183676227105967806248575805851690115766595912464605720430876938926309348571938571048861473764013501670845050163826145319468824465636289708760546059623651436564839797918158553193967295011385118252049443055344419409141760206318788249792718666115815920020934617534693992599020425908684488512736001702006904460516071849212988853455921750234006420904617205244519651122140696897155028342435444063176868626633505233968898228330058114775687676895386441165889193285874497630866146647473721934870889512856673999451093346088657016467343465825891316021774541497173447755432290332532272170479181558335461815662709203655845028521750311554436647473345134268099547552871594653453651900669702253966799713485776369084762609120586533717865791001748496732642628261220400919571701325166507306773874442477626084946082183121102900137333503268044263054564995645624773202485507436275029500678692235152644789387525917056646888326099262687939525433172424208102129490956019265393045839295111998238517359574525504491821165844649262256609414104842395444887402025415321201273386601855959481580327771835831562514651743384179486212980394667327227892082195406099618145876892045845005856727377432597861549858582738556101462675149918977209716798615406260052567543536162442156818117876666581600933118852673147908970998141795247342459118643394415254108752205504238918083228171890098462529393729129982248818191572888008737451585672930078937906610722454670454282493676421777612946502052796579370519277021702861970860989503085942613744969552927958656468283439760522581278636184726323355356990313303887169874593898075480607768573520834070830627038144615761493192812170827361844702354453076948016741862144456406979669599670054210198911284154951933914621769616427422598088953948363800996307190861329982887233000351782114542694727653931474480126734199557969734964949191314575452254170895011772399379927130992710446984212812688559685181134682383445397600115468365233485087240844749784083938471199644471769656770017305041651810530227695759633490649799137621599445823411417405021835045414255589050703262855630541380064884481141037395395921932410114223828466815983743750975741550138856979365283386735462904458732874935622270638616253498339243195366297573117670156860704878921325806636618829848959886022170364337256647596973155551818491006252282672861290767260657236127245343724614923778958797791825146510866008651554179162771339259851288954495508560954363105606845156110432565831615038848139604290353685112120870420870511723158251026398632790344904411037291664292403770393547956400584915014743980575982357207773300370936240327760213783940875954647344464382023174535631951960019284126352442362019856397169745000135013352595218421892520936027964348741900773391471067767058339578685659253132114715038638808449043924265336490715303136042997584770992859523936233689841333993360836117287382950790678759228919042684999721920914145536096494103433025856206876989904182934138505989551405950047215918917925029660356263336616300063212311663537995548917318057370945279989097652361266434163471290922458491604547845016374805684217644103603533590345385065429954305793815932117808096356664568608767209560659415481395587888801533381159668257077076553838953382008326921365147866445528549476815237933339886795806424391299718308244736181540356691858508780455036970225663364868506893562465356009094231379125450236373754119943845268509906804735113607402893527691853894056043874144708443738827156778751304533711945577939443070870711915432861978933951120693838346738185657663231786410323979250072968825996838819599778266875866498365131963783701905942830502964914648649726273365433038746319414066931682485235869876476190507879584577620093737312272336832519178523376317631490094674568527071780496933949463482202924019420089172455723512497870445187944559415097098727937407,1410554953728)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.26; o = G.27; p = G.28; q = G.29; r = G.30; s = G.31;
 
Permutation group:Degree $36$ $\langle(1,16,19,11,3,17,20,12,2,18,21,10)(4,8,24,25,30,33,36,14,6,7,22,27,28,32,34,15,5,9,23,26,29,31,35,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,16,19,11,3,17,20,12,2,18,21,10)(4,8,24,25,30,33,36,14,6,7,22,27,28,32,34,15,5,9,23,26,29,31,35,13), (1,20,2,19)(3,21)(4,18,30,5,16,28)(6,17,29)(7,15,8,13,9,14)(10,22,11,24,12,23)(25,33,26,32)(27,31)(34,35), (1,9,2,8,3,7)(10,36,22,12,34,24)(11,35,23)(13,32,26,20,14,31,27,19)(15,33,25,21)(16,18)(28,30) >;
 
Copy content gap:G := Group( (1,16,19,11,3,17,20,12,2,18,21,10)(4,8,24,25,30,33,36,14,6,7,22,27,28,32,34,15,5,9,23,26,29,31,35,13), (1,20,2,19)(3,21)(4,18,30,5,16,28)(6,17,29)(7,15,8,13,9,14)(10,22,11,24,12,23)(25,33,26,32)(27,31)(34,35), (1,9,2,8,3,7)(10,36,22,12,34,24)(11,35,23)(13,32,26,20,14,31,27,19)(15,33,25,21)(16,18)(28,30) );
 
Copy content sage:G = PermutationGroup(['(1,16,19,11,3,17,20,12,2,18,21,10)(4,8,24,25,30,33,36,14,6,7,22,27,28,32,34,15,5,9,23,26,29,31,35,13)', '(1,20,2,19)(3,21)(4,18,30,5,16,28)(6,17,29)(7,15,8,13,9,14)(10,22,11,24,12,23)(25,33,26,32)(27,31)(34,35)', '(1,9,2,8,3,7)(10,36,22,12,34,24)(11,35,23)(13,32,26,20,14,31,27,19)(15,33,25,21)(16,18)(28,30)'])
 
Transitive group: 36T119629 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(C_2^8.C_3:S_3^3:\SD_{16})$ $(C_3^{12}.C_2^8.C_3^4.Q_8.C_2)$ . $D_4$ (2) $(C_3^{12}.C_2^8.C_3^4.C_4:C_4)$ . $D_4$ (2) $(C_3^{12}.C_2^8.C_3^4.C_2^3:Q_8)$ . $C_2$ all 25

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 39 normal subgroups (25 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.C_2^5.C_2^4.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{11}.C_3^5$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3635 \times 3635$ character table is not available for this group.

Rational character table

The $3446 \times 3446$ rational character table is not available for this group.