Properties

Label 141...728.gb
Order \( 2^{15} \cdot 3^{16} \)
Exponent \( 2^{4} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{17} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,32,3,31)(2,33)(4,28,17)(5,30,18,6,29,16)(7,26,20,15)(8,27,21,13,9,25,19,14)(10,12,11)(22,23)(34,35,36), (1,10,14,35)(2,11,13,34,3,12,15,36)(4,8,18,33,6,7,17,31,5,9,16,32)(19,28)(20,29,21,30)(22,27)(23,26)(24,25), (1,30,3,28,2,29)(4,15,5,14)(6,13)(7,34,31,12,19,22,8,36,33,11,21,24)(9,35,32,10,20,23)(16,25)(17,26)(18,27) >;
 
Copy content gap:G := Group( (1,32,3,31)(2,33)(4,28,17)(5,30,18,6,29,16)(7,26,20,15)(8,27,21,13,9,25,19,14)(10,12,11)(22,23)(34,35,36), (1,10,14,35)(2,11,13,34,3,12,15,36)(4,8,18,33,6,7,17,31,5,9,16,32)(19,28)(20,29,21,30)(22,27)(23,26)(24,25), (1,30,3,28,2,29)(4,15,5,14)(6,13)(7,34,31,12,19,22,8,36,33,11,21,24)(9,35,32,10,20,23)(16,25)(17,26)(18,27) );
 
Copy content sage:G = PermutationGroup(['(1,32,3,31)(2,33)(4,28,17)(5,30,18,6,29,16)(7,26,20,15)(8,27,21,13,9,25,19,14)(10,12,11)(22,23)(34,35,36)', '(1,10,14,35)(2,11,13,34,3,12,15,36)(4,8,18,33,6,7,17,31,5,9,16,32)(19,28)(20,29,21,30)(22,27)(23,26)(24,25)', '(1,30,3,28,2,29)(4,15,5,14)(6,13)(7,34,31,12,19,22,8,36,33,11,21,24)(9,35,32,10,20,23)(16,25)(17,26)(18,27)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(39556170757266303760518903664508493112632161372421323224772569709991590306683146182532193993578704039087237301507905680695255761837162564209348909000166897119075684507642932504113820091258151828942951901742276964069204719528269318899081622417738611402522264959882393645150820152459737042176353203956284627189984267024446443939470219016380449115668673171582373345273584899334473737380813692304768694633904895444123253561200108655665397534029981505738474069091405994708348971569086310995327889872807528520084852792586855203523930644093881639743105280832090516211751064290847498300420840086220826126362521715091441492676933976890964016205741939553944494980659643109434720071402117078085157815136755918939171476263990791582282951835982017591876268591885603519769399734403094275615658465046655429997320531613545590970741715855166988985121896349765508586631401713910906064286883986789960160791764972654092193539894892952508736983894177157054631882325288462702016191029442268516164122403757788678178993277643706267874335122843914939642113874585669510515437367823046203149217721455652213000614846678315254099058775619571659986220189737658722279665116648368174238997079629185118452595386797266183409664098046145001170089350385983407406938269369346706291657658546441610011755366734396543131081181789137077949523590623351095930109887882760928879103062191753593755379567166234804516879288676514605530806843053705032284036807129134590960582601175275716877805569679454035080037135885087418547537522347431260920738933667601480900197182152797247402817132557259767254297657992267696049517684083591475039181598686091112411392493730718215848279667353071986526232106358885304796133565887821515842661771159637929227713685372805495873145009211112766129301869187778825943946649174999940300196352392068534326515232872632428992202178100392427848975931232528042246587802442456236674730390947571454867161713245190163003443540051373438541789528980055850947022483819258717485967464707121986469694055476472066976107676397862067425490518556992679419504271783787509025070650573651696772554341130032724722997164735119786583957699030600206396024369409906853940607569794129907287404273152909733128144815059364829178192848552677032649818412057275773591455658248084226611368090549500462122761098662488066373125774165053812725154899222808578378409609946415840484487202139363982559641900733584804681135119781485462126541576343821320716382722769409298071015986271267220752191853165841545780698714923364328573048075588222719807971142232321167543661523092933155984305467384991729385840756396165862609972802425159543812517225403001449708901783578894940863091862199389014666836600997082170567066497721794617160813626026036595560279143955057264803039944849909436408779611650933752085312685460418710039442664188263473801256633258178783232096707809599729873535314812624174207153409928277992628037816266885796695988117660545887739861700379429788316936350504083726168439907418686503270720347680916495296327306795820335888843705723948435954534876276830235238340602683229811915148432124282442413095017114115426391717757072534869605309415330071277129913393546088613831950724611929861685108846112331127155218788962232432063346827812733595602348883397960250239459661255263379289941049284284217769038848354087121898273793842422326049679743723224560312890318711730214983998199726850867773813808652630033379766945052166651806394831088806139951435924286090336961484512414369032949266717083161296631532783265986866191003943629612764534214436747678986072545894929269624151293336741478405002884230430317554688907243725398774152164181181127414083048119735581125237465339088580436195137297028951386641413088366259825645227713166932783948625129369575445201249681767013316932307283838454612090330764872168594689553768603159386278775489555481353533647376066515357300644411616475203487935786528665940048888738337003818242854940897769646895947072904889007778342012894430805738623981566995791494524419876205586173344139279790901422678167968063836095315624682684032579625110509616781147759505666675384936973498404926133607100939709650866573863798261213471678606409866190736148870187481982032117437954676532736557399182399337906269755086575997773174899390028121646742833766807705176007117911419293182719,1410554953728)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.9; f = G.11; g = G.13; h = G.15; i = G.17; j = G.19; k = G.21; l = G.23; m = G.25; n = G.26; o = G.27; p = G.28; q = G.29; r = G.30; s = G.31;
 

Group information

Description:$C_3^{12}.C_2^8.C_3^4.C_4:C_4.D_4$
Order: \(1410554953728\)\(\medspace = 2^{15} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(5642219814912\)\(\medspace = 2^{17} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 15, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 16 18 24 36 72
Elements 1 42286239 96059600 11118381408 64123132464 70910028288 3390724800 464015381760 176319369216 104534680896 376690839552 124076593152 15237476352 1410554953728
Conjugacy classes   1 31 145 84 1924 32 222 1406 4 870 105 297 11 5132
Divisions 1 31 145 76 1924 26 222 1371 2 870 88 287 10 5053
Autjugacy classes 1 31 135 70 1657 19 164 1253 1 600 74 217 10 4232

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([31, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 62, 9723243386912, 65558372092742, 19240342188315, 16436871398560, 107979287172003, 15345756967954, 42410116980393, 344, 46888778412724, 22004905218235, 10914062353806, 3451177057088, 129595799753141, 78297621574980, 14764828602163, 9915713458730, 9721692113157, 532, 264531391508054, 14330783847557, 67601189549108, 20192629135995, 7385882486070, 626, 31260817941511, 75851022112806, 16576694833221, 13398951436132, 6682682785027, 2049408535040, 78408948184712, 23449531491111, 53635384749670, 23094162535349, 3529740736284, 2442280261231, 4842693343742, 1668295439280, 814, 43013731230729, 59991086277160, 49768850948871, 23159929063622, 750841258693, 1700158333364, 3842688163275, 2580523766566, 169231990376074, 75291517730921, 69810820994184, 43389522818503, 65718780470, 12163682526369, 6068890386106, 1179296447600, 4837433760, 115412029648, 1002, 239303303322635, 82418524019754, 61466243480137, 14609229163880, 31154291847, 6148764543334, 2575913300837, 753758060196, 429332311411, 6752090, 323760531714060, 1267418923, 68126695183946, 584904063849, 1988524648, 5582980862951, 528207462, 816474158833, 2161952, 529833, 2137834, 22732260332, 1190, 495455008849933, 11999276, 20923876786251, 314907844714, 973437833, 3517145888424, 243359623, 1502639450150, 62757, 10739, 75662714716814, 38882705633325, 16726125635116, 13934366499227, 11262413534538, 9102989782249, 8064908651180, 2868057571191, 642798222382, 640749798833, 155388846654, 26230647100, 471896, 1378, 608711619454991, 226348671615022, 120584103155277, 66931649473388, 23316242522251, 19154799954986, 8661368791881, 5221861993960, 1475235936263, 736034712486, 65400901, 47833992356, 42051, 3294392788240, 1022586550319, 101630553728334, 53662274376877, 37538092694156, 18800850552651, 3677317717162, 3353872512761, 1567426343736, 558977386399, 57713150, 29728194729, 95248, 27873480, 3614428927, 1566, 6478104231953, 159253395701839, 79626697850990, 69424269, 14204593133740, 2266324624715, 8678250, 2892999, 53813341798, 80741, 233429667652242, 76551849225265, 37232867024, 18982838703, 48825259304974, 4658688605, 10470823235340, 3748448039563, 1748086767338, 624741340185, 113608233400, 1272599, 636510, 5788278974, 7819458, 1754, 205539850321939, 137762154086450, 78680678481, 39340339312, 17220269260943, 9835084974, 115707085, 69948291209, 268200, 536071, 89733, 531569004406292, 22389243996723, 48952542524338, 24496801760705, 16785244175760, 1929317328463, 1339047076958, 1614429451389, 592368604, 341697179, 25311210, 2742466, 1582415, 1942, 777252542939157, 151122614962228, 33870088175699, 16935044087922, 5526944717360, 4721818052367, 2361290711710, 63688157, 21213259, 710217990817942, 53028428820533, 21161180937108, 34244500689475, 53843752100882, 3994643179329, 10777375730800, 3938435033639, 2116559717046, 756412756429, 137687464556, 17711283, 6160714, 6990077058, 3511954000, 881786, 2130, 504359110950935, 1933148270646, 11850050691157, 5925025345652, 20757629141139, 10312839150514, 3020111879249, 1508806466160, 925762447, 84072940749, 36962284, 11892491, 18106441, 5120378120, 714759, 793471500288024, 171705163737655, 209438709350486, 104719354675317, 21463047705748, 12840329952179, 7822267410, 1577747678641, 895730002472, 149056977934, 43823981165, 36214596, 2434786958, 209018955644953, 204569763896, 401117271, 601675894, 25571220629, 50139828, 14377042667731, 24367869170, 8122623249, 1353770831, 11093397579, 1277194, 1045159, 29723, 1666179098, 54264536561752, 3754688375, 10088297736342, 303661136053, 722601036562, 449165430449, 3345375628, 2079470075, 543022, 44289261305883, 77926948356154, 247372645137497, 143629301136504, 6871600189591, 14825318119094, 9937118983893, 3118502903284, 379055739155, 347710745394, 8018487121, 1094242863, 9726148781, 1622552892, 6187689, 18280727, 1958917, 1108324175855644, 146058195534395, 9962043102810, 48900368711929, 22134888133784, 1717372617015, 19333745097046, 2400915831797, 525655376268, 157792365235, 133395087506, 60902316657, 3397832032, 14589583782, 752916589, 16312042, 2913408, 3226322, 1154868517969949, 154577462123580, 176259774366811, 91281851873402, 24008251945113, 35322128524984, 13430444682455, 1166860494966, 590642710117, 366299055668, 52082559699, 84089975410, 10544727281, 8699845423, 1709522774, 50019707, 5123089, 887931, 984491027684382, 624901523314237, 271791903990620, 129857858422395, 74354918837914, 27543398931257, 7118244349848, 7529932321591, 1761191926334, 850636484661, 380676117652, 152264469107, 32685816858, 5991485660, 2383007571, 2480948878, 412869252, 25532498, 8522860]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.3, G.4, G.6, G.9, G.11, G.13, G.15, G.17, G.19, G.21, G.23, G.25, G.26, G.27, G.28, G.29, G.30, G.31]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "d2", "d4", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "n", "o", "p", "q", "r", "s"]);
 
Copy content gap:G := PcGroupCode(39556170757266303760518903664508493112632161372421323224772569709991590306683146182532193993578704039087237301507905680695255761837162564209348909000166897119075684507642932504113820091258151828942951901742276964069204719528269318899081622417738611402522264959882393645150820152459737042176353203956284627189984267024446443939470219016380449115668673171582373345273584899334473737380813692304768694633904895444123253561200108655665397534029981505738474069091405994708348971569086310995327889872807528520084852792586855203523930644093881639743105280832090516211751064290847498300420840086220826126362521715091441492676933976890964016205741939553944494980659643109434720071402117078085157815136755918939171476263990791582282951835982017591876268591885603519769399734403094275615658465046655429997320531613545590970741715855166988985121896349765508586631401713910906064286883986789960160791764972654092193539894892952508736983894177157054631882325288462702016191029442268516164122403757788678178993277643706267874335122843914939642113874585669510515437367823046203149217721455652213000614846678315254099058775619571659986220189737658722279665116648368174238997079629185118452595386797266183409664098046145001170089350385983407406938269369346706291657658546441610011755366734396543131081181789137077949523590623351095930109887882760928879103062191753593755379567166234804516879288676514605530806843053705032284036807129134590960582601175275716877805569679454035080037135885087418547537522347431260920738933667601480900197182152797247402817132557259767254297657992267696049517684083591475039181598686091112411392493730718215848279667353071986526232106358885304796133565887821515842661771159637929227713685372805495873145009211112766129301869187778825943946649174999940300196352392068534326515232872632428992202178100392427848975931232528042246587802442456236674730390947571454867161713245190163003443540051373438541789528980055850947022483819258717485967464707121986469694055476472066976107676397862067425490518556992679419504271783787509025070650573651696772554341130032724722997164735119786583957699030600206396024369409906853940607569794129907287404273152909733128144815059364829178192848552677032649818412057275773591455658248084226611368090549500462122761098662488066373125774165053812725154899222808578378409609946415840484487202139363982559641900733584804681135119781485462126541576343821320716382722769409298071015986271267220752191853165841545780698714923364328573048075588222719807971142232321167543661523092933155984305467384991729385840756396165862609972802425159543812517225403001449708901783578894940863091862199389014666836600997082170567066497721794617160813626026036595560279143955057264803039944849909436408779611650933752085312685460418710039442664188263473801256633258178783232096707809599729873535314812624174207153409928277992628037816266885796695988117660545887739861700379429788316936350504083726168439907418686503270720347680916495296327306795820335888843705723948435954534876276830235238340602683229811915148432124282442413095017114115426391717757072534869605309415330071277129913393546088613831950724611929861685108846112331127155218788962232432063346827812733595602348883397960250239459661255263379289941049284284217769038848354087121898273793842422326049679743723224560312890318711730214983998199726850867773813808652630033379766945052166651806394831088806139951435924286090336961484512414369032949266717083161296631532783265986866191003943629612764534214436747678986072545894929269624151293336741478405002884230430317554688907243725398774152164181181127414083048119735581125237465339088580436195137297028951386641413088366259825645227713166932783948625129369575445201249681767013316932307283838454612090330764872168594689553768603159386278775489555481353533647376066515357300644411616475203487935786528665940048888738337003818242854940897769646895947072904889007778342012894430805738623981566995791494524419876205586173344139279790901422678167968063836095315624682684032579625110509616781147759505666675384936973498404926133607100939709650866573863798261213471678606409866190736148870187481982032117437954676532736557399182399337906269755086575997773174899390028121646742833766807705176007117911419293182719,1410554953728); a := G.1; b := G.3; c := G.4; d := G.6; e := G.9; f := G.11; g := G.13; h := G.15; i := G.17; j := G.19; k := G.21; l := G.23; m := G.25; n := G.26; o := G.27; p := G.28; q := G.29; r := G.30; s := G.31;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(39556170757266303760518903664508493112632161372421323224772569709991590306683146182532193993578704039087237301507905680695255761837162564209348909000166897119075684507642932504113820091258151828942951901742276964069204719528269318899081622417738611402522264959882393645150820152459737042176353203956284627189984267024446443939470219016380449115668673171582373345273584899334473737380813692304768694633904895444123253561200108655665397534029981505738474069091405994708348971569086310995327889872807528520084852792586855203523930644093881639743105280832090516211751064290847498300420840086220826126362521715091441492676933976890964016205741939553944494980659643109434720071402117078085157815136755918939171476263990791582282951835982017591876268591885603519769399734403094275615658465046655429997320531613545590970741715855166988985121896349765508586631401713910906064286883986789960160791764972654092193539894892952508736983894177157054631882325288462702016191029442268516164122403757788678178993277643706267874335122843914939642113874585669510515437367823046203149217721455652213000614846678315254099058775619571659986220189737658722279665116648368174238997079629185118452595386797266183409664098046145001170089350385983407406938269369346706291657658546441610011755366734396543131081181789137077949523590623351095930109887882760928879103062191753593755379567166234804516879288676514605530806843053705032284036807129134590960582601175275716877805569679454035080037135885087418547537522347431260920738933667601480900197182152797247402817132557259767254297657992267696049517684083591475039181598686091112411392493730718215848279667353071986526232106358885304796133565887821515842661771159637929227713685372805495873145009211112766129301869187778825943946649174999940300196352392068534326515232872632428992202178100392427848975931232528042246587802442456236674730390947571454867161713245190163003443540051373438541789528980055850947022483819258717485967464707121986469694055476472066976107676397862067425490518556992679419504271783787509025070650573651696772554341130032724722997164735119786583957699030600206396024369409906853940607569794129907287404273152909733128144815059364829178192848552677032649818412057275773591455658248084226611368090549500462122761098662488066373125774165053812725154899222808578378409609946415840484487202139363982559641900733584804681135119781485462126541576343821320716382722769409298071015986271267220752191853165841545780698714923364328573048075588222719807971142232321167543661523092933155984305467384991729385840756396165862609972802425159543812517225403001449708901783578894940863091862199389014666836600997082170567066497721794617160813626026036595560279143955057264803039944849909436408779611650933752085312685460418710039442664188263473801256633258178783232096707809599729873535314812624174207153409928277992628037816266885796695988117660545887739861700379429788316936350504083726168439907418686503270720347680916495296327306795820335888843705723948435954534876276830235238340602683229811915148432124282442413095017114115426391717757072534869605309415330071277129913393546088613831950724611929861685108846112331127155218788962232432063346827812733595602348883397960250239459661255263379289941049284284217769038848354087121898273793842422326049679743723224560312890318711730214983998199726850867773813808652630033379766945052166651806394831088806139951435924286090336961484512414369032949266717083161296631532783265986866191003943629612764534214436747678986072545894929269624151293336741478405002884230430317554688907243725398774152164181181127414083048119735581125237465339088580436195137297028951386641413088366259825645227713166932783948625129369575445201249681767013316932307283838454612090330764872168594689553768603159386278775489555481353533647376066515357300644411616475203487935786528665940048888738337003818242854940897769646895947072904889007778342012894430805738623981566995791494524419876205586173344139279790901422678167968063836095315624682684032579625110509616781147759505666675384936973498404926133607100939709650866573863798261213471678606409866190736148870187481982032117437954676532736557399182399337906269755086575997773174899390028121646742833766807705176007117911419293182719,1410554953728)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.9; f = G.11; g = G.13; h = G.15; i = G.17; j = G.19; k = G.21; l = G.23; m = G.25; n = G.26; o = G.27; p = G.28; q = G.29; r = G.30; s = G.31;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(39556170757266303760518903664508493112632161372421323224772569709991590306683146182532193993578704039087237301507905680695255761837162564209348909000166897119075684507642932504113820091258151828942951901742276964069204719528269318899081622417738611402522264959882393645150820152459737042176353203956284627189984267024446443939470219016380449115668673171582373345273584899334473737380813692304768694633904895444123253561200108655665397534029981505738474069091405994708348971569086310995327889872807528520084852792586855203523930644093881639743105280832090516211751064290847498300420840086220826126362521715091441492676933976890964016205741939553944494980659643109434720071402117078085157815136755918939171476263990791582282951835982017591876268591885603519769399734403094275615658465046655429997320531613545590970741715855166988985121896349765508586631401713910906064286883986789960160791764972654092193539894892952508736983894177157054631882325288462702016191029442268516164122403757788678178993277643706267874335122843914939642113874585669510515437367823046203149217721455652213000614846678315254099058775619571659986220189737658722279665116648368174238997079629185118452595386797266183409664098046145001170089350385983407406938269369346706291657658546441610011755366734396543131081181789137077949523590623351095930109887882760928879103062191753593755379567166234804516879288676514605530806843053705032284036807129134590960582601175275716877805569679454035080037135885087418547537522347431260920738933667601480900197182152797247402817132557259767254297657992267696049517684083591475039181598686091112411392493730718215848279667353071986526232106358885304796133565887821515842661771159637929227713685372805495873145009211112766129301869187778825943946649174999940300196352392068534326515232872632428992202178100392427848975931232528042246587802442456236674730390947571454867161713245190163003443540051373438541789528980055850947022483819258717485967464707121986469694055476472066976107676397862067425490518556992679419504271783787509025070650573651696772554341130032724722997164735119786583957699030600206396024369409906853940607569794129907287404273152909733128144815059364829178192848552677032649818412057275773591455658248084226611368090549500462122761098662488066373125774165053812725154899222808578378409609946415840484487202139363982559641900733584804681135119781485462126541576343821320716382722769409298071015986271267220752191853165841545780698714923364328573048075588222719807971142232321167543661523092933155984305467384991729385840756396165862609972802425159543812517225403001449708901783578894940863091862199389014666836600997082170567066497721794617160813626026036595560279143955057264803039944849909436408779611650933752085312685460418710039442664188263473801256633258178783232096707809599729873535314812624174207153409928277992628037816266885796695988117660545887739861700379429788316936350504083726168439907418686503270720347680916495296327306795820335888843705723948435954534876276830235238340602683229811915148432124282442413095017114115426391717757072534869605309415330071277129913393546088613831950724611929861685108846112331127155218788962232432063346827812733595602348883397960250239459661255263379289941049284284217769038848354087121898273793842422326049679743723224560312890318711730214983998199726850867773813808652630033379766945052166651806394831088806139951435924286090336961484512414369032949266717083161296631532783265986866191003943629612764534214436747678986072545894929269624151293336741478405002884230430317554688907243725398774152164181181127414083048119735581125237465339088580436195137297028951386641413088366259825645227713166932783948625129369575445201249681767013316932307283838454612090330764872168594689553768603159386278775489555481353533647376066515357300644411616475203487935786528665940048888738337003818242854940897769646895947072904889007778342012894430805738623981566995791494524419876205586173344139279790901422678167968063836095315624682684032579625110509616781147759505666675384936973498404926133607100939709650866573863798261213471678606409866190736148870187481982032117437954676532736557399182399337906269755086575997773174899390028121646742833766807705176007117911419293182719,1410554953728)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.9; f = G.11; g = G.13; h = G.15; i = G.17; j = G.19; k = G.21; l = G.23; m = G.25; n = G.26; o = G.27; p = G.28; q = G.29; r = G.30; s = G.31;
 
Permutation group:Degree $36$ $\langle(1,32,3,31)(2,33)(4,28,17)(5,30,18,6,29,16)(7,26,20,15)(8,27,21,13,9,25,19,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,32,3,31)(2,33)(4,28,17)(5,30,18,6,29,16)(7,26,20,15)(8,27,21,13,9,25,19,14)(10,12,11)(22,23)(34,35,36), (1,10,14,35)(2,11,13,34,3,12,15,36)(4,8,18,33,6,7,17,31,5,9,16,32)(19,28)(20,29,21,30)(22,27)(23,26)(24,25), (1,30,3,28,2,29)(4,15,5,14)(6,13)(7,34,31,12,19,22,8,36,33,11,21,24)(9,35,32,10,20,23)(16,25)(17,26)(18,27) >;
 
Copy content gap:G := Group( (1,32,3,31)(2,33)(4,28,17)(5,30,18,6,29,16)(7,26,20,15)(8,27,21,13,9,25,19,14)(10,12,11)(22,23)(34,35,36), (1,10,14,35)(2,11,13,34,3,12,15,36)(4,8,18,33,6,7,17,31,5,9,16,32)(19,28)(20,29,21,30)(22,27)(23,26)(24,25), (1,30,3,28,2,29)(4,15,5,14)(6,13)(7,34,31,12,19,22,8,36,33,11,21,24)(9,35,32,10,20,23)(16,25)(17,26)(18,27) );
 
Copy content sage:G = PermutationGroup(['(1,32,3,31)(2,33)(4,28,17)(5,30,18,6,29,16)(7,26,20,15)(8,27,21,13,9,25,19,14)(10,12,11)(22,23)(34,35,36)', '(1,10,14,35)(2,11,13,34,3,12,15,36)(4,8,18,33,6,7,17,31,5,9,16,32)(19,28)(20,29,21,30)(22,27)(23,26)(24,25)', '(1,30,3,28,2,29)(4,15,5,14)(6,13)(7,34,31,12,19,22,8,36,33,11,21,24)(9,35,32,10,20,23)(16,25)(17,26)(18,27)'])
 
Transitive group: 36T119626 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(A_4^2\wr C_2.C_2^3.D_4)$ $(C_3^{12}.C_2^8.C_3^4.C_4:C_4)$ . $D_4$ (2) $(C_3^{12}.C_2^8.C_3^4.C_4:C_4)$ . $D_4$ (2) $(C_3^{12}.C_2^8.C_3^4.C_4.C_4^2)$ . $C_2$ (2) all 30

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 61 normal subgroups (41 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.C_2^4.C_2^5.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $5132 \times 5132$ character table is not available for this group.

Rational character table

The $5053 \times 5053$ rational character table is not available for this group.