Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid b^{8}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([31, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 33534948197872, 20348810404165, 156, 83524716053342, 250, 24699772019171, 71174941717044, 105094481271995, 37487294846766, 11628959048847, 3126918703808, 5122627806437, 24237160784964, 52974914486011, 20029689325226, 12868985923461, 532, 43308618321030, 127545028345765, 15604721713124, 11852529018163, 6340544931018, 1239467934792, 148772463052167, 55652967452390, 55463486510533, 42020879235748, 16757871371171, 8103612218226, 1106834833081, 720, 82090155822344, 159734415557415, 83743116914518, 41437795445381, 17684372703732, 3054868464907, 5700299746388, 660833088160, 259022108428809, 151691858441000, 4879523404871, 8261501185542, 11330398736773, 5398279689044, 1731442277895, 320147308966, 1055098564307, 908, 205866120844042, 212540472585801, 68958180447624, 21609249330343, 16907630306822, 2565984884925, 6976847179960, 171108788891, 805400520336, 51961067456, 53729935111691, 195800636469162, 124347526641865, 44191828077800, 7066351983591, 5735903669014, 2634757527869, 1758681084756, 4601725819, 428886547562, 104593262397, 1096, 206896254829900, 65368484776235, 110899485103754, 23033278240233, 27531658084456, 10387080101903, 8075949405462, 1282312154677, 4094230400, 489126774531, 239090914228, 5230192416, 10370576240653, 273760858183724, 142243243974795, 19040306342506, 32138592998537, 2435194450248, 1701172567, 793589082278, 1480754866509, 2265772, 570599, 13374, 1284, 23093241937934, 250576670638125, 16661790796, 35704144431467, 17275818, 8638009, 7362819887960, 401991, 11515, 273710038230031, 261655159791662, 174449888921165, 78043218343020, 33885183638155, 18742351305770, 3302550337737, 3374644830568, 791611994567, 91788702822, 174540025477, 24164, 1472, 249214900554896, 140179924564431, 47428214507214, 55764406278253, 2898159532844, 2914848973611, 2949242895058, 481897299689, 1242768145512, 89525997199, 274866146606, 50949, 371775824, 195196696611857, 170910222652848, 150999030800719, 70682752728686, 97940088717, 22823763507244, 1523942050955, 2936054848554, 1070522223529, 950966216, 245300755431, 73540159558, 24659727869, 100860, 1372636958, 196859565, 1660, 597691756707858, 267251790790705, 162846800, 45223918341231, 22611959170702, 18652915208621, 9325111065612, 3109075685227, 942169545770, 86343621335, 85237, 2398434399, 714661307320339, 298118577047090, 165108500236881, 78539053178992, 50745490295183, 6778070997294, 11490826281325, 4228026353516, 1915320090507, 546428196298, 273071852969, 90853605000, 40614923191, 9179546822, 445697404, 761084615, 1848, 215536924753940, 18719521873971, 4067739730, 49986274673777, 10347650352, 12494270721919, 374882462, 385006845, 430285228, 347103378011, 3375145, 15905638647, 2651174549, 215089414467861, 328089023780020, 12678969422675, 4178140724850, 22905169296913, 17276806160240, 12642295363839, 513873163822, 1308678560909, 307879183164, 34071940123, 32760716042, 47459949369, 10098238024, 2629544238, 217248889, 2036, 549232604577814, 181033688530997, 109487539849044, 22620695155, 27373458924146, 22579723059873, 2406529216, 3763163611103, 1140554294766, 380049956797, 22177515, 17422001417, 2903410639, 998125730150423, 396030795692598, 70594634225749, 32441617318004, 61954879276947, 18430868241970, 2149382895185, 4578099233136, 338095503631, 884955252398, 183185686413, 85562827564, 17065559915, 3958769432, 323142783, 84147012, 2224, 242928908697624, 40502100556855, 197088767654486, 16945272576117, 57458205921748, 24511080967379, 12256835992410, 5282839332241, 2043708926672, 117599225703, 340250544334, 68640696365, 41304945996, 2294161689, 1575234520, 53075713, 187722842137, 239556152, 10007071506519, 389885902966, 16245246194, 708623645488, 318136066895, 106045355886, 59051970829, 3280665514, 1472852681, 2089704, 58708, 10410, 848121873011738, 424048654220601, 247652526366808, 112557061030007, 809763029142, 1349605048501, 202440757460, 33740126451, 745719271217, 331777908048, 50141576815, 61049842958, 3391658411, 696411306, 4339561, 121205, 30871, 669222894993435, 462433782343738, 286124248876121, 91210854131832, 21742600134679, 15926186534006, 8101601339541, 5132979343540, 1307823294227, 249815136114, 217025609809, 13553132912, 27180510735, 1509716364, 1678580587, 99827560, 729798, 84068, 141688129665052, 479860628239931, 166992625752282, 90554529996409, 19185097244984, 26512654952199, 15022753495846, 3608937991109, 2493066237396, 320142746467, 197596978322, 12107761137, 21566075440, 11045186351, 3227403301, 899654996, 106888121, 16279771, 2676165, 941347374197789, 283719787914300, 149356430219611, 125900656128122, 32659192535193, 34121785351864, 10937424245975, 260514040566, 802904503957, 466530140468, 402009091539, 143288507890, 6378342161, 17283715632, 1846489454, 951167325, 836464876, 139411338, 23191160, 3884422, 973236728577054, 294173087074621, 145683485874524, 71356618027131, 5578367533210, 17146162861241, 1394591883480, 2719328630647, 182402013302, 81960968757, 574623507796, 187236873587, 67673097618, 1688838769, 2202797007, 658846750, 303891821, 2572317, 398597]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.2, G.5, G.6, G.8, G.10, G.12, G.14, G.16, G.18, G.20, G.22, G.24, G.26, G.27, G.28, G.29, G.30, G.31]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "m2", "n", "o", "p", "q", "r", "s"]);
gap:G := PcGroupCode(19630789476668695116563790132179351567950935653242661712696906204619599483018082023728356212836003157682787515980894450227356709610971422419494750111829523029989594173116990551921184554163164333237808904497548261643455545676519981097121592442958682762209711716942879269046185416080956733632202774076887707632550452666951003711163099679210775490342191311062480426368181771543081231586920030415792935041195403192039229398729792546673462810716865065928388197916498384757024671175243917056894070223328675760695671836788313663764567364493544150841219066819205404813944231464931394940641292237681800589560634285942985080985480049549864387687021126838347304748209872379708272852050060805591096027002656659448783224913720330170156518561041323081440869100699057947116829803189111185993615312835381835264651097067292394640888467877025539487808680399193182800358893121980455701498761614943506921047971219125928744929552911717844250530382491963740405431901914629752742004999368616638542830192663570082657598441270531283389923595592928824226662191589802409056556046262014642255473014945371121672678400478957187372017553021559585129506161815336744404861954400466173844782567687024322836245940999996478866229332370797772512483123713053817563572033145450085562560503330168134410236076471612903751725635043894832952905852699484533649539210832169508274107655411684158383501071248818253066553984147463835228299297123546990369458813839064691874024136495762248031060954205422057102352146044391631427589378157366734438708603495157702429402047050368303013095188348391489081523934576265752039870362047336452078552193356675712250314798436617022923971670264208659772155023419808813897771268169315951971793133176108820465534935740815434007319109654314938917467858111273105274760925507592385453216802926499779455029875337104437372371364467446334454976981269970158907383970658484672333924112593283130706054717224936482269280921662735061753715765502166592641078849780449130112260068768374079471458703674034899620339598305665970576411660125590632027492114221716122116524379751304081261355450027913202158509620147412173671087702853964072003921490792411464158380625747389801599505686846419188847668977119409329672652964213232604409238794800565458994856640341376295776485874796533910954344508462829963624518877384877280804480679050078075067409232910585909917246946275100331254495054374457756884660077727606863450668070407978630027117701289080582566091536031161067708174724100452336370803935680049164659165526395684570277255068078569636470959166760832478976096235585862190629422161115792658949865882931343419226513701100293271434156067023762902389050595443615673021454731350199868481370376447061213336277022435728920833322292046783107659860906131658162550306188285123797584169832020753805884516460215211535704042219268536069713299545104147569488214634365837618078743724272663663353577991332157063162761912706097860293707773277916587180380117308089162085121230443501705640728958364063312359117756502340440320448918057880784763303375981065318865072367068757579910762010786063255099166222915397799401569418124942612923890337624108766378414410164137779581302005845863708182556180453258947337268390949531802418168052080982997746919236090488368382997850621518132835206428525198876568846396229418158945022895890783343149665750910850622711234370237461847623196110743194501920897187058807929631583388534759710860227106728940331295442931897100320860546135066824103016167292920905371863884794889172219866734696678963457019039676887301307889006312387992614137723982437630416074140213548176641065125877362363996713641538777121072921546434709999793860149024865426324260194473669202618884578383362542855651927900703884518670495884242176237448434745663667208123795842503337423170121964988069317539126466380806646790795027758246048936304452909962699361337812250613546064293355541978524793418076078871177866242317353035297112291749493713041321954053536982691682531282116911115449123392528133732396502056867879420341878519503603389634272057927195757652607156094208433015911303751408295131584599201727532428475566584854324428560564164283989924945400067719066421503499759726700734797749676151958962444776658766126342898933582377197571660421643501156244340980894665008718419497521110999656967710508045884871893264898179189347318615959029079362392864803587886967559841000807103076621435791443126933055300629826702277162919740091894822988130200847441749748710506621844004142583831006138709534603061383372532109664863844860527183703317764544235223141212214200704802429868940761322879,1410554953728); a := G.1; b := G.2; c := G.5; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.18; k := G.20; l := G.22; m := G.24; n := G.26; o := G.27; p := G.28; q := G.29; r := G.30; s := G.31;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(19630789476668695116563790132179351567950935653242661712696906204619599483018082023728356212836003157682787515980894450227356709610971422419494750111829523029989594173116990551921184554163164333237808904497548261643455545676519981097121592442958682762209711716942879269046185416080956733632202774076887707632550452666951003711163099679210775490342191311062480426368181771543081231586920030415792935041195403192039229398729792546673462810716865065928388197916498384757024671175243917056894070223328675760695671836788313663764567364493544150841219066819205404813944231464931394940641292237681800589560634285942985080985480049549864387687021126838347304748209872379708272852050060805591096027002656659448783224913720330170156518561041323081440869100699057947116829803189111185993615312835381835264651097067292394640888467877025539487808680399193182800358893121980455701498761614943506921047971219125928744929552911717844250530382491963740405431901914629752742004999368616638542830192663570082657598441270531283389923595592928824226662191589802409056556046262014642255473014945371121672678400478957187372017553021559585129506161815336744404861954400466173844782567687024322836245940999996478866229332370797772512483123713053817563572033145450085562560503330168134410236076471612903751725635043894832952905852699484533649539210832169508274107655411684158383501071248818253066553984147463835228299297123546990369458813839064691874024136495762248031060954205422057102352146044391631427589378157366734438708603495157702429402047050368303013095188348391489081523934576265752039870362047336452078552193356675712250314798436617022923971670264208659772155023419808813897771268169315951971793133176108820465534935740815434007319109654314938917467858111273105274760925507592385453216802926499779455029875337104437372371364467446334454976981269970158907383970658484672333924112593283130706054717224936482269280921662735061753715765502166592641078849780449130112260068768374079471458703674034899620339598305665970576411660125590632027492114221716122116524379751304081261355450027913202158509620147412173671087702853964072003921490792411464158380625747389801599505686846419188847668977119409329672652964213232604409238794800565458994856640341376295776485874796533910954344508462829963624518877384877280804480679050078075067409232910585909917246946275100331254495054374457756884660077727606863450668070407978630027117701289080582566091536031161067708174724100452336370803935680049164659165526395684570277255068078569636470959166760832478976096235585862190629422161115792658949865882931343419226513701100293271434156067023762902389050595443615673021454731350199868481370376447061213336277022435728920833322292046783107659860906131658162550306188285123797584169832020753805884516460215211535704042219268536069713299545104147569488214634365837618078743724272663663353577991332157063162761912706097860293707773277916587180380117308089162085121230443501705640728958364063312359117756502340440320448918057880784763303375981065318865072367068757579910762010786063255099166222915397799401569418124942612923890337624108766378414410164137779581302005845863708182556180453258947337268390949531802418168052080982997746919236090488368382997850621518132835206428525198876568846396229418158945022895890783343149665750910850622711234370237461847623196110743194501920897187058807929631583388534759710860227106728940331295442931897100320860546135066824103016167292920905371863884794889172219866734696678963457019039676887301307889006312387992614137723982437630416074140213548176641065125877362363996713641538777121072921546434709999793860149024865426324260194473669202618884578383362542855651927900703884518670495884242176237448434745663667208123795842503337423170121964988069317539126466380806646790795027758246048936304452909962699361337812250613546064293355541978524793418076078871177866242317353035297112291749493713041321954053536982691682531282116911115449123392528133732396502056867879420341878519503603389634272057927195757652607156094208433015911303751408295131584599201727532428475566584854324428560564164283989924945400067719066421503499759726700734797749676151958962444776658766126342898933582377197571660421643501156244340980894665008718419497521110999656967710508045884871893264898179189347318615959029079362392864803587886967559841000807103076621435791443126933055300629826702277162919740091894822988130200847441749748710506621844004142583831006138709534603061383372532109664863844860527183703317764544235223141212214200704802429868940761322879,1410554953728)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.26; o = G.27; p = G.28; q = G.29; r = G.30; s = G.31;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(19630789476668695116563790132179351567950935653242661712696906204619599483018082023728356212836003157682787515980894450227356709610971422419494750111829523029989594173116990551921184554163164333237808904497548261643455545676519981097121592442958682762209711716942879269046185416080956733632202774076887707632550452666951003711163099679210775490342191311062480426368181771543081231586920030415792935041195403192039229398729792546673462810716865065928388197916498384757024671175243917056894070223328675760695671836788313663764567364493544150841219066819205404813944231464931394940641292237681800589560634285942985080985480049549864387687021126838347304748209872379708272852050060805591096027002656659448783224913720330170156518561041323081440869100699057947116829803189111185993615312835381835264651097067292394640888467877025539487808680399193182800358893121980455701498761614943506921047971219125928744929552911717844250530382491963740405431901914629752742004999368616638542830192663570082657598441270531283389923595592928824226662191589802409056556046262014642255473014945371121672678400478957187372017553021559585129506161815336744404861954400466173844782567687024322836245940999996478866229332370797772512483123713053817563572033145450085562560503330168134410236076471612903751725635043894832952905852699484533649539210832169508274107655411684158383501071248818253066553984147463835228299297123546990369458813839064691874024136495762248031060954205422057102352146044391631427589378157366734438708603495157702429402047050368303013095188348391489081523934576265752039870362047336452078552193356675712250314798436617022923971670264208659772155023419808813897771268169315951971793133176108820465534935740815434007319109654314938917467858111273105274760925507592385453216802926499779455029875337104437372371364467446334454976981269970158907383970658484672333924112593283130706054717224936482269280921662735061753715765502166592641078849780449130112260068768374079471458703674034899620339598305665970576411660125590632027492114221716122116524379751304081261355450027913202158509620147412173671087702853964072003921490792411464158380625747389801599505686846419188847668977119409329672652964213232604409238794800565458994856640341376295776485874796533910954344508462829963624518877384877280804480679050078075067409232910585909917246946275100331254495054374457756884660077727606863450668070407978630027117701289080582566091536031161067708174724100452336370803935680049164659165526395684570277255068078569636470959166760832478976096235585862190629422161115792658949865882931343419226513701100293271434156067023762902389050595443615673021454731350199868481370376447061213336277022435728920833322292046783107659860906131658162550306188285123797584169832020753805884516460215211535704042219268536069713299545104147569488214634365837618078743724272663663353577991332157063162761912706097860293707773277916587180380117308089162085121230443501705640728958364063312359117756502340440320448918057880784763303375981065318865072367068757579910762010786063255099166222915397799401569418124942612923890337624108766378414410164137779581302005845863708182556180453258947337268390949531802418168052080982997746919236090488368382997850621518132835206428525198876568846396229418158945022895890783343149665750910850622711234370237461847623196110743194501920897187058807929631583388534759710860227106728940331295442931897100320860546135066824103016167292920905371863884794889172219866734696678963457019039676887301307889006312387992614137723982437630416074140213548176641065125877362363996713641538777121072921546434709999793860149024865426324260194473669202618884578383362542855651927900703884518670495884242176237448434745663667208123795842503337423170121964988069317539126466380806646790795027758246048936304452909962699361337812250613546064293355541978524793418076078871177866242317353035297112291749493713041321954053536982691682531282116911115449123392528133732396502056867879420341878519503603389634272057927195757652607156094208433015911303751408295131584599201727532428475566584854324428560564164283989924945400067719066421503499759726700734797749676151958962444776658766126342898933582377197571660421643501156244340980894665008718419497521110999656967710508045884871893264898179189347318615959029079362392864803587886967559841000807103076621435791443126933055300629826702277162919740091894822988130200847441749748710506621844004142583831006138709534603061383372532109664863844860527183703317764544235223141212214200704802429868940761322879,1410554953728)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.26; o = G.27; p = G.28; q = G.29; r = G.30; s = G.31;
|
Permutation group: | Degree $36$
$\langle(1,19,27,33,15,9,3,20,25,31,13,7,2,21,26,32,14,8)(4,30,18,5,28,16,6,29,17) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,19,27,33,15,9,3,20,25,31,13,7,2,21,26,32,14,8)(4,30,18,5,28,16,6,29,17)(10,34)(11,35,12,36)(22,24,23), (1,22)(2,24,3,23)(4,7)(5,9,6,8)(10,27,34,15)(11,25,36,14,12,26,35,13)(16,21,28,32,17,20,29,31)(18,19,30,33), (1,7,13,32,27,20)(2,9,14,31,26,19,3,8,15,33,25,21)(4,35,28,23,17,12)(5,36,30,22,18,11,6,34,29,24,16,10) >;
gap:G := Group( (1,19,27,33,15,9,3,20,25,31,13,7,2,21,26,32,14,8)(4,30,18,5,28,16,6,29,17)(10,34)(11,35,12,36)(22,24,23), (1,22)(2,24,3,23)(4,7)(5,9,6,8)(10,27,34,15)(11,25,36,14,12,26,35,13)(16,21,28,32,17,20,29,31)(18,19,30,33), (1,7,13,32,27,20)(2,9,14,31,26,19,3,8,15,33,25,21)(4,35,28,23,17,12)(5,36,30,22,18,11,6,34,29,24,16,10) );
sage:G = PermutationGroup(['(1,19,27,33,15,9,3,20,25,31,13,7,2,21,26,32,14,8)(4,30,18,5,28,16,6,29,17)(10,34)(11,35,12,36)(22,24,23)', '(1,22)(2,24,3,23)(4,7)(5,9,6,8)(10,27,34,15)(11,25,36,14,12,26,35,13)(16,21,28,32,17,20,29,31)(18,19,30,33)', '(1,7,13,32,27,20)(2,9,14,31,26,19,3,8,15,33,25,21)(4,35,28,23,17,12)(5,36,30,22,18,11,6,34,29,24,16,10)'])
|
Transitive group: |
36T119622 |
|
|
|
more information |
Direct product: |
not computed |
Semidirect product: |
not computed |
Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
Possibly split product: |
$(C_3^{12}.C_2^6.A_4.S_3^3)$ . $D_8$ (2) |
$C_3^{12}$ . $(C_2^8.C_3:S_3^3:D_8)$ |
$(C_3^{12}.C_2^8.C_3^4.D_4.C_2)$ . $D_4$ (2) |
$(C_3^{12}.C_2^8.C_3^4.C_4:C_4)$ . $D_4$ (2) |
all 25 |
Elements of the group are displayed as permutations of degree 36.
The $4913 \times 4913$ character table is not available for this group.
The $4858 \times 4858$ rational character table is not available for this group.