Properties

Label 140625000.k
Order \( 2^{3} \cdot 3^{2} \cdot 5^{9} \)
Exponent \( 2^{2} \cdot 3 \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{8} \cdot 3^{3} \cdot 5^{9} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \cdot 3 \)
Perm deg. $45$
Trans deg. $45$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,4,2,5,3)(6,44,7,45,8,41,9,42,10,43)(11,37,14,40,12,38,15,36,13,39)(16,33,20,32,19,31,18,35,17,34)(21,28,25,27,24,26,23,30,22,29), (1,16,4,19,2,17,5,20,3,18)(6,15,8,12,10,14,7,11,9,13)(21,45,23,42,25,44,22,41,24,43)(26,40,27,36,28,37,29,38,30,39)(31,34,32,35,33), (1,7,43)(2,6,44)(3,10,45)(4,9,41)(5,8,42)(11,20,21,12,19,25,13,18,24,14,17,23,15,16,22)(26,32,37,28,35,39,30,33,36,27,31,38,29,34,40) >;
 
Copy content gap:G := Group( (1,4,2,5,3)(6,44,7,45,8,41,9,42,10,43)(11,37,14,40,12,38,15,36,13,39)(16,33,20,32,19,31,18,35,17,34)(21,28,25,27,24,26,23,30,22,29), (1,16,4,19,2,17,5,20,3,18)(6,15,8,12,10,14,7,11,9,13)(21,45,23,42,25,44,22,41,24,43)(26,40,27,36,28,37,29,38,30,39)(31,34,32,35,33), (1,7,43)(2,6,44)(3,10,45)(4,9,41)(5,8,42)(11,20,21,12,19,25,13,18,24,14,17,23,15,16,22)(26,32,37,28,35,39,30,33,36,27,31,38,29,34,40) );
 
Copy content sage:G = PermutationGroup(['(1,4,2,5,3)(6,44,7,45,8,41,9,42,10,43)(11,37,14,40,12,38,15,36,13,39)(16,33,20,32,19,31,18,35,17,34)(21,28,25,27,24,26,23,30,22,29)', '(1,16,4,19,2,17,5,20,3,18)(6,15,8,12,10,14,7,11,9,13)(21,45,23,42,25,44,22,41,24,43)(26,40,27,36,28,37,29,38,30,39)(31,34,32,35,33)', '(1,7,43)(2,6,44)(3,10,45)(4,9,41)(5,8,42)(11,20,21,12,19,25,13,18,24,14,17,23,15,16,22)(26,32,37,28,35,39,30,33,36,27,31,38,29,34,40)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(81720787206975866142895404014671546892461042312581898490380986622712462388443426877799189763121518974234051941259896774989909404044399016580323301665380247151637284518171035315699832315798977021320356362890933020261778314882118448956717016398537821222706591200234839764865088678093603165719411729792653346334470985805115685118588154601247342099772326607117738753805555668728670378313204455164361512204362032713976203744698756137592044249590920745278662690279260159,140625000)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.5; f = G.7; g = G.8; h = G.9; i = G.10; j = G.11; k = G.12; l = G.13; m = G.14;
 

Group information

Description:$C_5^9.C_3:S_4$
Order: \(140625000\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{9} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(13500000000\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{9} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 3, $C_3$ x 2, $C_5$ x 9
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial or rational has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Statistics about orders of elements in this group have not been computed.

Minimal presentations

Permutation degree:$45$
Transitive degree:$45$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid d^{2}=e^{10}=f^{5}=g^{5}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, -2, -3, -3, -2, 2, -5, 5, 5, 5, 5, 5, 5, 5, 5, 691943616, 832299665, 221300367, 5429970506, 1672816840, 452047206, 4325302803, 2163792473, 1120458391, 8525162524, 1434193128, 313393322, 876306, 200, 1512019, 1371888033, 1391, 5843595750, 826875020, 1948632034, 7888, 12741321607, 4602019989, 1221486371, 44849, 353505663, 1786050008, 893025022, 9450036, 126064, 8899218743, 2530555477, 674100051, 700065, 2602908010, 4591380048, 42542, 7700052, 3850066, 417312011, 19190329, 2860405671, 199500053, 21000067, 3849300012, 5507775026, 416325040, 113750068, 22766184013, 3220083243, 690911801, 1408750055, 612500069]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.2, G.3, G.4, G.5, G.7, G.8, G.9, G.10, G.11, G.12, G.13, G.14]); AssignNames(~G, ["a", "b", "c", "d", "e", "e2", "f", "g", "h", "i", "j", "k", "l", "m"]);
 
Copy content gap:G := PcGroupCode(81720787206975866142895404014671546892461042312581898490380986622712462388443426877799189763121518974234051941259896774989909404044399016580323301665380247151637284518171035315699832315798977021320356362890933020261778314882118448956717016398537821222706591200234839764865088678093603165719411729792653346334470985805115685118588154601247342099772326607117738753805555668728670378313204455164361512204362032713976203744698756137592044249590920745278662690279260159,140625000); a := G.1; b := G.2; c := G.3; d := G.4; e := G.5; f := G.7; g := G.8; h := G.9; i := G.10; j := G.11; k := G.12; l := G.13; m := G.14;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(81720787206975866142895404014671546892461042312581898490380986622712462388443426877799189763121518974234051941259896774989909404044399016580323301665380247151637284518171035315699832315798977021320356362890933020261778314882118448956717016398537821222706591200234839764865088678093603165719411729792653346334470985805115685118588154601247342099772326607117738753805555668728670378313204455164361512204362032713976203744698756137592044249590920745278662690279260159,140625000)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.5; f = G.7; g = G.8; h = G.9; i = G.10; j = G.11; k = G.12; l = G.13; m = G.14;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(81720787206975866142895404014671546892461042312581898490380986622712462388443426877799189763121518974234051941259896774989909404044399016580323301665380247151637284518171035315699832315798977021320356362890933020261778314882118448956717016398537821222706591200234839764865088678093603165719411729792653346334470985805115685118588154601247342099772326607117738753805555668728670378313204455164361512204362032713976203744698756137592044249590920745278662690279260159,140625000)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.5; f = G.7; g = G.8; h = G.9; i = G.10; j = G.11; k = G.12; l = G.13; m = G.14;
 
Permutation group:Degree $45$ $\langle(1,4,2,5,3)(6,44,7,45,8,41,9,42,10,43)(11,37,14,40,12,38,15,36,13,39)(16,33,20,32,19,31,18,35,17,34) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 45 | (1,4,2,5,3)(6,44,7,45,8,41,9,42,10,43)(11,37,14,40,12,38,15,36,13,39)(16,33,20,32,19,31,18,35,17,34)(21,28,25,27,24,26,23,30,22,29), (1,16,4,19,2,17,5,20,3,18)(6,15,8,12,10,14,7,11,9,13)(21,45,23,42,25,44,22,41,24,43)(26,40,27,36,28,37,29,38,30,39)(31,34,32,35,33), (1,7,43)(2,6,44)(3,10,45)(4,9,41)(5,8,42)(11,20,21,12,19,25,13,18,24,14,17,23,15,16,22)(26,32,37,28,35,39,30,33,36,27,31,38,29,34,40) >;
 
Copy content gap:G := Group( (1,4,2,5,3)(6,44,7,45,8,41,9,42,10,43)(11,37,14,40,12,38,15,36,13,39)(16,33,20,32,19,31,18,35,17,34)(21,28,25,27,24,26,23,30,22,29), (1,16,4,19,2,17,5,20,3,18)(6,15,8,12,10,14,7,11,9,13)(21,45,23,42,25,44,22,41,24,43)(26,40,27,36,28,37,29,38,30,39)(31,34,32,35,33), (1,7,43)(2,6,44)(3,10,45)(4,9,41)(5,8,42)(11,20,21,12,19,25,13,18,24,14,17,23,15,16,22)(26,32,37,28,35,39,30,33,36,27,31,38,29,34,40) );
 
Copy content sage:G = PermutationGroup(['(1,4,2,5,3)(6,44,7,45,8,41,9,42,10,43)(11,37,14,40,12,38,15,36,13,39)(16,33,20,32,19,31,18,35,17,34)(21,28,25,27,24,26,23,30,22,29)', '(1,16,4,19,2,17,5,20,3,18)(6,15,8,12,10,14,7,11,9,13)(21,45,23,42,25,44,22,41,24,43)(26,40,27,36,28,37,29,38,30,39)(31,34,32,35,33)', '(1,7,43)(2,6,44)(3,10,45)(4,9,41)(5,8,42)(11,20,21,12,19,25,13,18,24,14,17,23,15,16,22)(26,32,37,28,35,39,30,33,36,27,31,38,29,34,40)'])
 
Transitive group: 45T3927 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_5^9.A_4)$ . $S_3$ (4) $(C_5^9.C_3)$ . $S_4$ $(C_5^9.A_4.C_3)$ . $C_2$ $C_5^3$ . $(C_5^6.C_3:S_4)$ all 7

Elements of the group are displayed as permutations of degree 45.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 13 normal subgroups (10 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_5^9.A_4.C_3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^9$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

The character tables for this group have not been computed.