| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p \mid e^{3}=g^{12}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([30, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 3, 3, 3, 1181180289120, 2275566016681, 151, 11873187559082, 858412815182, 12482829533763, 4732937150913, 546527658543, 1733650127613, 1143334696804, 955725094834, 1458305501464, 1964110458994, 424, 5240896755845, 9457473602915, 2647819055585, 782181205295, 516310987475, 16525171998726, 4372744356, 634583638146, 2438118144096, 245523726, 28672296, 23279340564487, 451901137957, 687560186947, 865698136417, 800593430527, 693355726237, 13867, 697, 34136988641288, 466836575078, 146843720708, 4382800187858, 1800469983008, 963402841598, 5108, 14770496179209, 1886760758439, 421743360069, 1244669023299, 2000441582529, 1150981903959, 56889, 12819, 879, 41729210307850, 1738587396520, 657014920390, 5185632508420, 1100530920850, 865008437200, 970, 749905931, 2448557141801, 503427041351, 168184250021, 2399735813891, 1381154405921, 45739586580492, 5953096581162, 844339261032, 5250179151462, 294151267932, 545201442, 82639662, 70452, 7446162, 3163992, 1581012, 1152, 32943047639053, 27991808409643, 1265679717193, 2492550144103, 226067889733, 113090826403, 4717663, 39796093, 14041723, 6632953, 552283, 34507729036814, 9790273281644, 1602042732074, 7177505425304, 2764923519734, 1557834703364, 972194, 130572224, 6123854, 22966484, 11526614, 5625794, 1185674, 1334, 59923535708175, 30583297505325, 929935872075, 3778136355945, 1315904083335, 1236446622885, 273922755, 5875425, 5598975, 1889565, 933435, 1425, 31587374949136, 520949300206, 1318008047116, 7894463983546, 165076106536, 1792624867366, 3084676, 12485026, 50233216, 1114126, 8372476, 33979778277137, 36532928275247, 614046251597, 9011493302507, 1727094091817, 1357696132007, 8864837, 65474147, 75816257, 8722367, 13452797, 6823787, 240197, 1607, 70617839466258, 299561812848, 131883243918, 4412498715228, 1256763679338, 2138840147688, 341535078, 12394308, 53680578, 17921088, 8947038, 10818, 623794867219, 40776609945649, 586575820879, 282215923309, 3492359193739, 193669056169, 197510629, 14774659, 4925089, 16459519, 1231549, 522806779, 648409, 62251639, 108469, 40129, 1789, 1288431567380, 19507888834610, 412402959440, 621765849710, 1322182673420, 141322890410, 392455100, 1361210, 91536920, 227270, 38330, 1880, 662171811861, 40865460387891, 6710584401, 875012751471, 1589829261, 177860137131, 575942781, 1140891, 68619321, 190551, 32211, 6152352122902, 5361914309812, 23912034831442, 594450859072, 5977939553422, 981746749612, 51508224232, 11975662342, 4020503332, 4299506242, 1005126112, 605698942, 302253532, 76110202, 16692952, 8197702, 8744212, 2658442, 1598632, 518122, 2062, 1960736440343, 11163899934773, 11332943954003, 1240694392433, 3141039928463, 2967948656813, 30098718953, 24186470663, 8077087013, 2523156803, 2019272033, 457851263, 227681693, 91031483, 12442073, 7050773, 5391923, 847313, 899183, 13673, 11093210496024, 14856961896054, 21805583616084, 161248698114, 3675141072144, 2574291456174, 52348032234, 19175616264, 6407424294, 4377888324, 1601856354, 492480384, 244944414, 86400444, 10692474, 4374504, 11394534, 3969564, 306594, 891624, 32184, 2244, 9616072826905, 10752682037815, 15288516771925, 335599355635, 5668370772625, 3088925798575, 35518279915, 23290675465, 7795906855, 2967944005, 1948976995, 729181825, 363917215, 131190205, 20218075, 5504215, 3033205, 243955, 506065, 2335, 11961284567066, 16030792581176, 21942839347286, 3920048784146, 70140764336, 52000911596, 20256169226, 6768852776, 4350205766, 1692213476, 305130626, 151165856, 70217726, 16796636, 11431256, 4199606, 506036, 700466, 7468105236507, 10123202396217, 22762713415767, 1083553874037, 4063329930387, 162407669937, 1254113517, 28531077387, 9545195817, 113218887, 2386299237, 105961347, 52255137, 38223807, 52255197, 4597017, 1452087, 1008597, 242547, 20782448668, 16741417018, 436431421528, 3953836918, 576712949908, 1262533755058, 490985349358, 140281528588, 46760509738, 40915446088, 11690127718, 649451968, 568270558, 162363388, 94712218, 27061048, 1504048, 188638, 157348, 32098, 7739670528029, 24883259, 3095868211289, 491443319, 386983526549, 3047495270579, 972689, 583919, 130349, 97979]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p := Explode([G.1, G.2, G.4, G.5, G.7, G.8, G.10, G.13, G.15, G.18, G.20, G.23, G.25, G.28, G.29, G.30]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "f", "f2", "g", "g2", "g4", "h", "h2", "i", "i2", "i4", "j", "j2", "k", "k2", "k4", "l", "l2", "m", "m2", "m4", "n", "o", "p"]);
gap:G := PcGroupCode(17184054525117786398230026724907732608880080507738604159213647671301147087288509348132946006559643381166891344859722278822029277050074013196425664057238448561125277367506781221057068860385661220716025157469892422828022507479570938191596609779879628311393817514874758527933917612678782309281269128973926448595947556099248558828463878855685055551916277831313951529307510166720940497113900858483037616108271255965084169898003047124420797222943159486128805887735808871260668617816986541814506184794302838093429533366355463175355934252041668232834834354761990740571045958264102549604489608581489799361126004597928680336514321493336947805114746919295345399872609520279858326331979992838906038072142864913396482481594746842450231346764546988050027589701746957463438867348201503935495723561778202485979592321515176158494296624951043800679678453412663638411706813239158942453662707982304328689423827770900216591111101145900585725737766623721898675497666202411193921479255975111450684353946144269990219675384525528976342028142238453323338250337075547233851974399468028939083348021588668279482195421572786793645538121362662055969604885415678578887805585113283935845740726566298658349617412329529031927672924830005186456927226140099237995804141083537093125358859769862169241623054475440898399505427410365932799959152692267930215129864738177037175292734790579463937242120293030200548921077129374409587119577032070032030167226266667172108798122234116976702636331850695312385914962646270504181835221302755444278565665229772370427287357082582802427082112101653375864453158405337342416618421053934622878518553111912754028996455719102569700836791678046545322427880603371207257453796754210435227924806591023496212090098051033473167019912469813593321164110471824512636241746364751443421149569443148696163654667029573131992256377821646271050131955775994909467519927486639543623995237082191485119200847541932770673329050294642866628974633399002529016314410290912540252312473061943169722024280190122515164052477815463997703628222744476476927214384304158377918561066220098125768119335999046260222722749642862990006991534783917233445191694071839019045171572055374816099738188102562586370278841950924357903387753392240228951621520147075054198749340289029495865000327546540988615082362244032447540562607667218657798703247685020402568300640857706150180543377128280681291848665214892881510382501148134163382910020072894788292750550807193182157015942365365571451086981988199528022748904933613645131193571023239001721697988367865375222875686837906010401485239451370996140532364175480083465978059129579552123740484579094170581687635487579928567599134106225244946526607901790547793985052613698017548839303745729865535495912523688598292376185458850629636134909186758536527779466034054820028035697287199502009527874778610089913765775029977335158412717871509604883214102332497283303314945456330164939501740564516653320674188663750545200235969133143793276545919900754955489340469229991107492430071708207218979353904637982180410698482955073184766555806569419656030010744621646793487105919033085815959859979733941729954834536576829011923915330565459562757551159189718570027511006166355913321475618723772491387278905461783866323782570520116356937471926193071723921133100248433544584818709259220073089873501334488463511348800763676579959459286803042212141565297152381510548525791308260732147572933737336369931834426264203040578528658775935009937894048704291082611177130391571265536430075088893124939940660751662086497937047195740137217962125273388126764120903562418026104557797967385531725793358180270194453065419979770781895736063184315576184891873831466175335372101430712181889993361578184234926168097833490358273332663099597420109791983926142876042481310052768873645967831971128320652994288466013846957362228211646073028924454125871453824013310042371751510298092687442598558715933932469076802161746241800830360722729610830427685161207586957647,139314069504); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.8; g := G.10; h := G.13; i := G.15; j := G.18; k := G.20; l := G.23; m := G.25; n := G.28; o := G.29; p := G.30;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(17184054525117786398230026724907732608880080507738604159213647671301147087288509348132946006559643381166891344859722278822029277050074013196425664057238448561125277367506781221057068860385661220716025157469892422828022507479570938191596609779879628311393817514874758527933917612678782309281269128973926448595947556099248558828463878855685055551916277831313951529307510166720940497113900858483037616108271255965084169898003047124420797222943159486128805887735808871260668617816986541814506184794302838093429533366355463175355934252041668232834834354761990740571045958264102549604489608581489799361126004597928680336514321493336947805114746919295345399872609520279858326331979992838906038072142864913396482481594746842450231346764546988050027589701746957463438867348201503935495723561778202485979592321515176158494296624951043800679678453412663638411706813239158942453662707982304328689423827770900216591111101145900585725737766623721898675497666202411193921479255975111450684353946144269990219675384525528976342028142238453323338250337075547233851974399468028939083348021588668279482195421572786793645538121362662055969604885415678578887805585113283935845740726566298658349617412329529031927672924830005186456927226140099237995804141083537093125358859769862169241623054475440898399505427410365932799959152692267930215129864738177037175292734790579463937242120293030200548921077129374409587119577032070032030167226266667172108798122234116976702636331850695312385914962646270504181835221302755444278565665229772370427287357082582802427082112101653375864453158405337342416618421053934622878518553111912754028996455719102569700836791678046545322427880603371207257453796754210435227924806591023496212090098051033473167019912469813593321164110471824512636241746364751443421149569443148696163654667029573131992256377821646271050131955775994909467519927486639543623995237082191485119200847541932770673329050294642866628974633399002529016314410290912540252312473061943169722024280190122515164052477815463997703628222744476476927214384304158377918561066220098125768119335999046260222722749642862990006991534783917233445191694071839019045171572055374816099738188102562586370278841950924357903387753392240228951621520147075054198749340289029495865000327546540988615082362244032447540562607667218657798703247685020402568300640857706150180543377128280681291848665214892881510382501148134163382910020072894788292750550807193182157015942365365571451086981988199528022748904933613645131193571023239001721697988367865375222875686837906010401485239451370996140532364175480083465978059129579552123740484579094170581687635487579928567599134106225244946526607901790547793985052613698017548839303745729865535495912523688598292376185458850629636134909186758536527779466034054820028035697287199502009527874778610089913765775029977335158412717871509604883214102332497283303314945456330164939501740564516653320674188663750545200235969133143793276545919900754955489340469229991107492430071708207218979353904637982180410698482955073184766555806569419656030010744621646793487105919033085815959859979733941729954834536576829011923915330565459562757551159189718570027511006166355913321475618723772491387278905461783866323782570520116356937471926193071723921133100248433544584818709259220073089873501334488463511348800763676579959459286803042212141565297152381510548525791308260732147572933737336369931834426264203040578528658775935009937894048704291082611177130391571265536430075088893124939940660751662086497937047195740137217962125273388126764120903562418026104557797967385531725793358180270194453065419979770781895736063184315576184891873831466175335372101430712181889993361578184234926168097833490358273332663099597420109791983926142876042481310052768873645967831971128320652994288466013846957362228211646073028924454125871453824013310042371751510298092687442598558715933932469076802161746241800830360722729610830427685161207586957647,139314069504)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.13; i = G.15; j = G.18; k = G.20; l = G.23; m = G.25; n = G.28; o = G.29; p = G.30;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(17184054525117786398230026724907732608880080507738604159213647671301147087288509348132946006559643381166891344859722278822029277050074013196425664057238448561125277367506781221057068860385661220716025157469892422828022507479570938191596609779879628311393817514874758527933917612678782309281269128973926448595947556099248558828463878855685055551916277831313951529307510166720940497113900858483037616108271255965084169898003047124420797222943159486128805887735808871260668617816986541814506184794302838093429533366355463175355934252041668232834834354761990740571045958264102549604489608581489799361126004597928680336514321493336947805114746919295345399872609520279858326331979992838906038072142864913396482481594746842450231346764546988050027589701746957463438867348201503935495723561778202485979592321515176158494296624951043800679678453412663638411706813239158942453662707982304328689423827770900216591111101145900585725737766623721898675497666202411193921479255975111450684353946144269990219675384525528976342028142238453323338250337075547233851974399468028939083348021588668279482195421572786793645538121362662055969604885415678578887805585113283935845740726566298658349617412329529031927672924830005186456927226140099237995804141083537093125358859769862169241623054475440898399505427410365932799959152692267930215129864738177037175292734790579463937242120293030200548921077129374409587119577032070032030167226266667172108798122234116976702636331850695312385914962646270504181835221302755444278565665229772370427287357082582802427082112101653375864453158405337342416618421053934622878518553111912754028996455719102569700836791678046545322427880603371207257453796754210435227924806591023496212090098051033473167019912469813593321164110471824512636241746364751443421149569443148696163654667029573131992256377821646271050131955775994909467519927486639543623995237082191485119200847541932770673329050294642866628974633399002529016314410290912540252312473061943169722024280190122515164052477815463997703628222744476476927214384304158377918561066220098125768119335999046260222722749642862990006991534783917233445191694071839019045171572055374816099738188102562586370278841950924357903387753392240228951621520147075054198749340289029495865000327546540988615082362244032447540562607667218657798703247685020402568300640857706150180543377128280681291848665214892881510382501148134163382910020072894788292750550807193182157015942365365571451086981988199528022748904933613645131193571023239001721697988367865375222875686837906010401485239451370996140532364175480083465978059129579552123740484579094170581687635487579928567599134106225244946526607901790547793985052613698017548839303745729865535495912523688598292376185458850629636134909186758536527779466034054820028035697287199502009527874778610089913765775029977335158412717871509604883214102332497283303314945456330164939501740564516653320674188663750545200235969133143793276545919900754955489340469229991107492430071708207218979353904637982180410698482955073184766555806569419656030010744621646793487105919033085815959859979733941729954834536576829011923915330565459562757551159189718570027511006166355913321475618723772491387278905461783866323782570520116356937471926193071723921133100248433544584818709259220073089873501334488463511348800763676579959459286803042212141565297152381510548525791308260732147572933737336369931834426264203040578528658775935009937894048704291082611177130391571265536430075088893124939940660751662086497937047195740137217962125273388126764120903562418026104557797967385531725793358180270194453065419979770781895736063184315576184891873831466175335372101430712181889993361578184234926168097833490358273332663099597420109791983926142876042481310052768873645967831971128320652994288466013846957362228211646073028924454125871453824013310042371751510298092687442598558715933932469076802161746241800830360722729610830427685161207586957647,139314069504)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.13; i = G.15; j = G.18; k = G.20; l = G.23; m = G.25; n = G.28; o = G.29; p = G.30;
|
| Permutation group: | Degree $36$
$\langle(1,20,3,24,7,27,2,25,5,21,6,26,8,23,4,22)(9,19)(10,12)(13,15)(16,18)(28,34,32,31,30,33,35,36) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,20,3,24,7,27,2,25,5,21,6,26,8,23,4,22)(9,19)(10,12)(13,15)(16,18)(28,34,32,31,30,33,35,36), (1,22,6,23,2,19)(3,25,8,24,7,27)(4,20,9,21,5,26)(10,36,14,34,15,33)(11,32,12,28,16,31)(13,29,17,30,18,35), (1,18,21,34,3,10,24,36,4,13,20,28,7,11,19,31,5,12,26,29,6,17,23,30,2,14,27,35,8,16,25,32)(9,15,22,33) >;
gap:G := Group( (1,20,3,24,7,27,2,25,5,21,6,26,8,23,4,22)(9,19)(10,12)(13,15)(16,18)(28,34,32,31,30,33,35,36), (1,22,6,23,2,19)(3,25,8,24,7,27)(4,20,9,21,5,26)(10,36,14,34,15,33)(11,32,12,28,16,31)(13,29,17,30,18,35), (1,18,21,34,3,10,24,36,4,13,20,28,7,11,19,31,5,12,26,29,6,17,23,30,2,14,27,35,8,16,25,32)(9,15,22,33) );
sage:G = PermutationGroup(['(1,20,3,24,7,27,2,25,5,21,6,26,8,23,4,22)(9,19)(10,12)(13,15)(16,18)(28,34,32,31,30,33,35,36)', '(1,22,6,23,2,19)(3,25,8,24,7,27)(4,20,9,21,5,26)(10,36,14,34,15,33)(11,32,12,28,16,31)(13,29,17,30,18,35)', '(1,18,21,34,3,10,24,36,4,13,20,28,7,11,19,31,5,12,26,29,6,17,23,30,2,14,27,35,8,16,25,32)(9,15,22,33)'])
|
| Transitive group: |
36T116873 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$(C_3^8.C_2^4.C_2^8.C_3^4.Q_8)$ . $D_4$ (2) |
$(C_3^8.C_2^4.C_2^8.C_3^4.D_4)$ . $D_4$ (2) |
$C_3^8$ . $(C_2^4.C_2^8.C_3^4.D_4:D_4)$ |
$(C_3^8.C_2^4)$ . $(A_4^2\wr C_2.C_2^2.D_4)$ |
all 20 |
Elements of the group are displayed as permutations of degree 36.
The $1645 \times 1645$ character table is not available for this group.
The $1274 \times 1274$ rational character table is not available for this group.